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Fast Transient Thermal Analysis of Gold
Nanoparticles in Tissue-Like Medium

Changhong Liu, Ben Q. Li, and Chunting Chris Mi∗, Senior Member, IEEE

Abstract—Gold-nanoparticle-based hyperthermia has attracted
considerable attention in the recent ten years in cancer treatment.
In hyperthermia-based cancer treatment, in order to produce effi-
cient thermal therapy yet without excessive heat damage to human
body, besides the steady-state thermal condition, the transient ther-
mal response is of vital importance. As part of theoretical research
associated with nanoparticle-mediated hyperthermia therapy for
cancer treatment, the transient heat transfer process of laser inter-
acting with gold nanoparticle in tissue-like medium is investigated.
Within the framework of dual-phase-lag (DPL) model, this paper
focuses on the microscopic heat transfer performance of a gold
nanoparticle in a surrounding medium. A semianalytical solution
of 1-D nonhomogenous DPL equation in spherical coordinates is
presented for a heat transfer process with a constant laser heat
source and a short-pulsed laser heating source. Results show that
the transient temperature calculated by DPL model greatly ex-
ceeds that predicted by the classical diffusion model, with either
a constant source or a pulsed source. This phenomenon is mainly
attributed by the phase lag of heat flux in the surrounding tissue.

Index Terms—Diffusion model, dual-phase-lag (DPL) model,
gold nanoparticle, transient thermal response.

NOMENCLATURE

a Particle radius (in meters).
A Coefficient in (9).
b Coefficient in (16).
Ci1 Coefficient in (13).
Ci2 Coefficient in (13).
Ce Volumetric heat capacity of electron [in joules per(cubic

meter·kelvin)].
Cl Volumetric heat capacity of lattice [in joules per(cubic

meter·kelvin)].
Cp Specific heat [in joules per (kilogram·kelvin).
D Coefficient in (9).
E Coefficient in (12).
g Reciprocal of penetration depth.
J Intensity of laser pulse (in joules per square meter).
k Thermal conductivity [in watts per(meter·kelvin)].

Manuscript received August 27, 2008; revised April 5, 2009. Current version
published January 4, 2010. This work was supported by the grants from the
Office of the Vice President for Research, University of Michigan. Asterisk
indicates corresponding author.

C. Liu is with Shanghai Jiao Tong University, Shanghai 200030, China,
and also with the Department of Electrical and Computer Engineer-
ing, University of Michigan-Dearborn, Dearborn, MI 48128 USA (e-mail:
lchsh@umd.umich.edu).

B. Q. Li is with the Department of Mechanical Engineering, University of
Michigan-Dearborn, Dearborn, MI 48128 USA (e-mail: benqli@umich.edu).

*C. C. Mi is with the Department of Electrical and Computer Engineer-
ing, University of Michigan-Dearborn, Dearborn, MI 48128 USA (e-mail:
chrismi@umich.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNB.2009.2028885

p Laplacian parameter.
q Heat flux (in watts per square meter).
r Radial coordinate (in meters).
Q Volumetric heating source (in watts per cubic meter).
R Reflectivity.
S Volumetric heating source (in watts per cubic meter).
t Time (in seconds).
T Temperature (in kelvins).
T0 The initial temperature (in kelvins).
U Dimensionless variable in Laplacian transform domain.
W Dimensionless volumetric heating source.

Greek symbols
α Thermal diffusivity (in square meters per second).
β Dimensionless time.
γ Coefficient.
δ Dimensionless radial coordinate.
η Dimensionless heat flux.
λ Dimensionless particle radius.
τq Phase lag of heat flux (in seconds).
τT Phase lag of temperature gradient (in seconds).
Θ Dimensionless temperature.
Θ Laplace transform of dimensionless temperature.

Subscript
i Lyer number.
1 Particle or inner layer.
2 Tissue or outer layer.
s Steady state.
r Reference variable.
p Laplace transform domain.
T Temperature gradient.
q Heat flux.

I. INTRODUCTION

GOLD nanoparticles have received considerable attentions
in cancer treatment in the recent ten years. This is due to

the unique optical properties exhibited by spherical particles at
nanoscale. There exists significant local electric field enhance-
ment near metal–dielectric interface due to the strong localized
surface plasmon resonance (LSPR) and the high tunability of
LSPR frequency [1], [2]. When exposed to a laser beam with
appropriate wavelengths, the nanoparticles preembedded in a
tumor absorb energy, and then heat up, but the healthy tissues
along the laser path do not. With temperature increasing, can-
cerous cells gradually lose activity. The treatment at a temper-
ature between 40 ◦C and 44 ◦C is believed cytotoxic for cells
in an environment with hypoxia and low pH, conditions that
are found to be largely associated with tumor tissue, but not
in normal tissues [3], [4]. This makes the nanoparticle-based
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thermotherapy superior to other traditional treatments for non-
invasive and targeted therapy of cancer patients. Although this
promising idea has been principally confirmed in experiments
on small animals [5], [6], the corresponding theoretical research,
to our best knowledge, has not been conducted systematically.
Consequently, there is a lack of fundamental understanding of
the interaction between laser and tissue, and laser and nanopar-
ticles. Developing such understanding requires the analysis of
heat transfer at a local microscale. From the clinic application
point of view, quantitative relationships need to be established
for a thermal dose based on the intensity, style, and irradiat-
ing time of laser. In order to produce efficient thermotherapy
yet without excessive heat damage to human body, besides the
steady-state thermal condition, the transient thermal response is
of vital importance.

For most engineering applications, the heat conduction can be
described by classical diffusion equation. However, there exist
regimes of space and time where such macroscopic equations
are no longer applicable. This has been proved in many litera-
tures [7]–[10]. Within the macroscopic framework, temperature
field is assumed not only to be continuum, but also holding ther-
moequilibrium at every location. However, when length scale is
comparable to or smaller than the mean free path of the mate-
rial (at room temperature, the mean free path of gold is around
38 nm), the macroscopic model is of question. Since there are
no sufficient energy carriers in the interested direction, the tem-
perature field is discontinuous. Once the concept of temperature
gradient fails, the classical Fourier’s law is also questionable, so
is the associated diffusion equation. A similar situation exists
in the response time for temperature. Macroscopic heat equa-
tion assumes that temperature gradient follows simultaneously
with heat flux vector. In fact, any physical process needs a finite
time to take place, so does the heat energy transfer in media.
As a result, once the response time of primary concern is of
the same order of magnitude as the mean free time, the lagging
behavior caused by phonon–electron interaction in metal films
or phonon scattering in dielectric media must be taken into ac-
count. For most metals, mean free time or relaxation time is in
the order of picoseconds. For dielectric crystal, it is in the order
of nanoseconds to picoseconds.

In nanoparticle-based hyperthermia, hundreds of thousands
gold nanoshells, with shell thickness of 2–10 nm, absorb heat
from either continuous wave (CW) laser or pulsed wave (PW)
laser source. It is generally believed that pulsed laser produces
more locally concentrated energy and more penetration depth in
media [11]. Hence, short pulsed laser with very short duration
is widely used in medical applications. Due to the fact that
short pulsed laser interacting with nanoparticles determines the
microscopic nature of heat transfer from both microstructure
and microtime scale point of view, microscopic heat conduction
model should be used instead of macroscopic model. So far,
to the best of our knowledge, few publications studied the heat
transfer mechanism of nanoparticle-based hyperthermia from
the microscopic prospective.

The purpose of this paper is to investigate the fast transient
thermal response of both nanoparticles and tissue under constant
and pulsed heat sources. This paper is considered a continuation

Fig. 1. Schematic diagram for laser heating.

of the electromagnetic analysis of laser–nanoparticle interaction
published earlier [12], where some preliminary data on the fre-
quency tunability of plasmonic gold nanoparticles and animal
experiments that validated the concept of the heat generation
through particle–laser interaction were presented. As a first step,
a single solid gold sphere embedded in infinite tissue-like media
is considered (see Fig. 1). The heat generation inside the par-
ticle is assumed uniformly distributed. Thus, the mathematical
model reduces to a transient 1-D nonhomogenous heat con-
duction problem in spherical coordinate. Constant heat source
and pulsed laser heat source are studied. A Laplace-transform-
based solution for transient heat transfer within the framework
of dual-phase-lag (DPL) model is presented. It should be noted
that although the actual geometry shape and heat sources in real
application may differ from a constant one, the analysis should
be helpful in gaining physical insight into the behavior of the
nanoparticle at spatial and temporal scales.

II. MATHEMATICAL FORMULATION

In order to consider the effect of microstructured interaction
at very short time scale, Tzou proposed the DPL model, which
describes microscopic thermal phenomenon by modifying the
macroscopic description of heat conduction [13]. The physical
explanation and the effect has been validated by experimental
results [13], [14], and the model proves to be useful in the study
of transient energy transport processes in single- and multilay-
ered materials [15]–[20].

As stated in [13], due to finite wave speed, heat flux vector
and temperature gradient occur at different instants of time.
Compared to Fourier’s law, the constitutive equation can be
written as

⇀
q (⇀

r , t + τq ) = −k∇T (⇀
r , t + τT ) (1)

where t is time instant at which conservation of energy is im-
posed and τq is the phase lag of the heat flux vector. At time
instant t + τq , heat flows through the material volume and τT

is the phase lag of temperature gradient. At time instant t + τT ,
temperature gradient is established across a material volume.
Obviously, in the DPL model presented before, the microscopic
thermal phenomenon are lumped into two delayed response time
to predict the thermobehavior in microscale. Tang and Araki in-
terpreted the physical explanation of these two parameters from
the microscale sense [15]. For dielectric crystals, by comparing
DPL model with the pure phonon field model [21], it can be
found that τq is the relaxation time for the momentum noncon-
serving process and τT is the relaxation time for the normal
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process conserving the momentum in the phonon system. For
metals, by comparing with the micro-two-step model [22], it is
found that τT captures the time delay due to the microstructural
interaction effect, namely, the finite time required for phonon–
electron interaction to take place and τq captures the time delay
due to the fast transient effect of thermal inertia. The two param-
eters τT and τq account for the time required by both heat flux
and temperature gradient to gradually respond to thermal distur-
bances, such as an imposed temperature difference or heating.

The first-order expansion of (1) with respect to t is

⇀
q (⇀

r , t)+τq
∂

⇀
q (⇀

r , t)
∂t

≈−k

{
∇T (⇀

r , t)+ τT
∂

∂t
[∇T (⇀

r , t)]
}

.

(2)
Taking the divergence of (2) and substituting ∇·⇀q to the

energy equation established at a general time t

−∇·⇀q (⇀
r , t) + Q(⇀

r , t) = Cp
∂T (⇀

r , t)
∂t

· (3)

The T representation of the DPL model is

∇2T + τT
∂

∂t
∇2T +

1
K

[
Q + τq

∂Q

∂t

]
=

1
α

∂T

∂t
+

τq

α

∂2T

∂t2

(4)
subject to the following boundary conditions:

T1(a, t) = T2(a, t)

q1(a, t) = q2(a, t)

∂T1(0, t)
∂r

= 0

T2(∞, t) = T0 (5)

and initial condition

T (r, 0) = T0 .

It should be noted that when τq = τT , (1) reduces to Fourier’s
law, and DPL model in (4) becomes the classical diffusion equa-
tion. If τT = 0, (4) becomes the CV wave model originated
by Cattaneo and Vernotte. The DPL mode can also be devel-
oped to the hyperbolic two-step model, the parabolic two-step
model, Jeffreys type heat flux model, and microscopic phonon-
scattering model [13].

III. SEMIANALYTICAL SOLUTION

A. Constant Heat Source

By introducing the following dimensionless variables:

Θ =
T − Tr

Tr
, β =

t

τqr
, δ =

r
√

αrτqr
, αri =

αi

αr
,

Kri =
Ki

Kr
, τT ri =

τT i

τqr
, τqri =

τqi

τqr
, and

W =
Q

krTr/αrτqr
.

Equation (4) in spherical coordinates can be written as

(
∂2Θ
∂δ2 +

2
δ

∂Θ
∂δ

)
+ τT ri

∂

∂β

(
∂2Θ
∂δ2 +

2
δ

∂Θ
∂δ

)

+
W

Kri
=

1
αri

∂Θ
∂β

+
τqri

αri

∂2Θ
∂β2 . (6)

Applying the Laplace transform to (6) yields

(
∂2Θ
∂δ2 +

2
δ

∂Θ
∂δ

)
− (1+ τqrip)

αri(1+ τT rip)
Θ +

1
Kri(1+ τT rip)p

W= 0.

(7)
Introducing Θ = U

/
δ, with some algebraic manipulations,

(7) becomes

∂2U

∂δ2 − (1 + τqrip)
αri(1 + τT rip)

U +
1

Kri(1 + τT rip)p
Wδ = 0. (8)

We then introduce

Ai =
(1 + τqrip)

αri(1 + τT rip)
Di =

1
Kri(1 + τT rip)p

W

with i = 2, D2 = 0, (8) is further simplified as

∂2U

∂δ2 − AiU + Diδ = 0. (9)

The aforementioned equation is a differential equation written
in the nondimensionless variables in the Laplacian transform
domain. It is straightforward to obtain the general solution of Θ
to (9) in the following form:

Θi(δ; p) =
Ui(δ; p)

δ
=

Di

Ai
+

Ci1e
√

Ai δ + Ci2e
−
√

Ai δ

δ
. (10)

By introducing nondimensional heat flux variable

η =
q

krTr/
√

αrτqr

boundary conditions in (5) are rewritten as follows:




Θ1 = Θ2 as r = a

η1 = η2 as r = a

∂Θ1

∂δ
= 0 as r = 0

Θ2 = 0 as r = ∞.

(11)

Applying dimensionless analysis and taking Laplace trans-
form with respect to β

η (δ; p) ≈ −Ei
∂Θ
∂δ

(12)

where

Ei =
Kri (1 + τT rip)

1 + τqrip
.
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Substituting (10) into (12), the following expression is ob-
tained:

ηi (δ; p) ≈ −Kri (1 + τT rip)
1 + τqrip

(
−Ci1e

√
Ai δ + Ci2e

−
√

Ai δ

δ2

+
Ci1

√
Aie

√
Ai δ − Ci2

√
Aie

−
√

Ai δ

δ

)
. (13)

The four coefficients in (10) can thus be determined from (11)
and the solution of Θ in the Laplace transform domain takes the
following form, (14), as shown at the bottom of this page, where
λ1 = a

/√
α1τq1 .

The Laplacian inversion of (14) is computed using the
Riemann sum approximation given by [13]

Θ(δ, β)=
eγβ

β

[
1
2
Θ (δ, γ) + Re

∞∑
n=1

Θ
(
δ, p=γ + j

nπ

β

)
(−1)n

]

(15)
which is the inversed Laplace transform of Θ(δ, p). For faster
convergence, numerical experiments have shown that a value
satisfying the relation γβ = 4.7 gives satisfactory results in
most cases [13].

B. Pulsed Laser Heating Source

Assuming that the distribution of the pulsed laser energy is a
function of radius with a Gaussian profile, the pulsed volumetric
heating is expressed as

S(r, t) = 0.94Jg

(
1 − R

tp

)
e−g |a−r |−(b|t−2tp |/tp ) . (16)

Employing the same scheme for the nondimension variable,
the Laplace transform, and boundary conditions, one gets the
differential equation with respect to the nondimensionless vari-
ables in the Laplacian transform domain, which takes the same
form as (14), but with the following coefficients:

Ai =
(1 + τqrip)p

αri(1 + τT rip)
Di =

(1 + τqrip)W − τqriW (δ, 0)
Kri(1 + τT rip)

where W (δ; p) = W0β0e
−g0 δ [(e−2b − e−2pβp /pβp − b) +

(e−2pβp/pβp + b)], W (δ, 0) = W0e
−g0 δ−2b , W0 = 0.94Jg(1 −

R/tp)/(krTr/αrτqr ), g0 = g
√

αrτqr , βp = tp/τqr , and if i =
2, D2 = 0.

C. Steady-State Solution

For the purpose of comparison between the transient tem-
perature and the steady-state temperature, the solution of the

steady-state nondimension temperature is also presented with-
out detail derivation as

Θ1 = − W

6Kr1
δ2 +

2a2k1W + a2k2W

6k2α1τq1

Θ2 =
k1a

3W

3k2α1τq1
√

α1τq1

1
δ
. (17)

IV. PHASE LAG PARAMETERS τT AND τq

Since both microstructured effect and microtemporal effect
have been lumped into the resultant delayed response in time,
the constant value of τT and τq are crucial for the description
of the heat transport in microscopic scale. However, the deter-
mination of τT and τq , either theoretically or experimentally,
remains a problem. For metal film with regular arrangement of
crystal, by comparing DPL model with the hyperbolic two-step
model [22], Tzou [13] developed the direct relationship of the
two characteristic time constants with the microscopic thermal
properties, which is

α =
K

Ce + Cl
, τT =

Cl

G
, and τq =

1
G

[
1
Ce

+
1
Cl

]−1

(18)
where G is a function of electron mass, electron gas density per
unit volume, Planck constant, Boltzmann constant, and Debye
temperature. By using (18), Tzou obtained τq = 0.744 ps and
τT = 89.28 ps for gold film. These two parameters picture the
electron–electron and electron–phonon relaxation process.

As the particle temperature increases, energy transfer process
from particle to its surrounding medium begins to take place
through phonon–phonon coupling. This process determines how
long the particle remains being heated without heat dissipation
toward surrounding medium. Unfortunately, the thermal relax-
ation time of biotissue is still in dispute. No unified conclusion
has been reached due to the complexity of tissue components.
Vedavarz et al. [24] used the expression τphonon = 3α/υ2 to
estimate the value of relaxation time of biological tissue, which
is 1–100 s at room temperature. Mitra et al. [25] performed
four experiments with different boundary conditions and found
that τq in the processed meat was about 16 s and τT was about
0.043 s. Kaminski et al. [26] estimated that τq is in the range
of 20–30 s. Banerjee et al. [27] used relaxation time of 5 s to
carry out the theoretical non-Fourier hyperbolic heat analysis
and found that it is closer to the experiment results than that
with the parabolic Fourier heat conduction.

It should be noted that although the main component of biotis-
sue is water, the experimental relaxation time of gold nanopar-
ticle to water is far smaller than that presented before. Hu and
Hartland [28], and Hartland [29] experimentally concluded that

Θ1(δ; p) =
D1

A1

(
1 +

E2λ1
(
1 +

√
A2λ1

)(
e(λ1 +δ)

√
A 1 − e(λ1 −δ)

√
A 1

)
E1

(
1 − e2

√
A 1 λ1 +

√
A1λ1

(
1 + e2

√
A 1 λ1

))
+ E2

(
e2

√
A 1 λ1 − 1

)(
1 +

√
A2λ1

)
)

Θ2(δ; p) =
D1

A1

1
δ

E1λ1
(
1 − e2

√
A 1 λ1 +

√
A1λ1

(
1 + e2

√
A 1 λ1

))
e(λ1 −δ)

√
A 2

E1
(
1 − e2

√
A 1 λ1 +

√
A1λ1

(
1 + e2

√
A 1 λ1

))
+ E2

(
e2

√
A 1 λ1 − 1

)(
1 +

√
A2λ1

) (14)
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TABLE I
THERMAL PARAMETERS

the time scale of energy dissipation from gold nanoparticle to
environments depended on both particle size and surrounding
medium. An approximation relationship τ = 0.64R2 ps was
suggested for gold nanoparticle in aqueous solution by Hu and
Hartland, where R is particle radius in nanometers. In this way,
heat is transferred around 580 ps from gold nanoparticles with
radius 30 nm into the nearby water shell. However, it is doubt-
ful whether the relaxation time of water can be comparable to
that of tissue. This is because animal tissue is a kind of ma-
terial with air leak. Its thermal properties may depend greatly
on the volume fraction of air gap. The thermal insulation ef-
fects of air gap have already proved by Lapotko, who reported
that vapor bubble generated around nanoparticle is irradiated
by pulsed laser with larger fluence. The bubbles, in turn, pre-
vent the heat inside the nanoparticle from being transferred into
environments, and then, the temperature of gold nanoparticle
may dramatically increase to the melting point, without causing
temperature of surrounding medium too high [30], [31]. Ekici
et al. interpreted the heat transfer from nanorods to surround-
ing water in another way [32]. A two-temperature model was
first used for gold nanorods, and then, an equivalent thermal
interface conductance was employed to describe the outgoing
heat transfer. The results show gold nanoparticle was close to
melting point under certain fluence.

The aforementioned facts indicate that the heat transfer pro-
cess from nanoparticle to surrounding water is greatly changed
by the vapor bubbles. This, to a certain degree, implies that
the tissue with air gap may significantly differ from water, as
far as the thermal relaxation time is concerned. The exact pa-
rameter differences between water and tissue obviously need
further investigation. In this study, however, we put an empha-
sis on the analysis of the overheat phenomenon caused by the
larger relaxation time of surrounding medium compared to gold
nanoparticle with less focus on what the exact characteristic
time of the tissue will be.

V. RESULTS AND DISCUSSIONS

A. Temperature Response With Constant Heat Source

We first consider a solid spherical gold particle with radius of
30 nm embedded in infinite tissue-like medium. Constant heat
is applied inside the particle at t = 0. The initial temperature and
the temperature at infinite distance are assumed to be T0 , with
thermal physical properties assumed constant. The lag phase of
temperature gradient and heat flux vector τT and τq are finally
given in Table I [13], [23], [24].

In order to verify the analytical solution, we first set τT =
τq = 0 in the program, thus the DPL model reduces to a diffusion

Fig. 2. Dimensionless temperature distribution of diffusion model. θs is the
maximal steady-state temperature of the particle.

model. The temperature distribution was compared with that of
the steady-state case (see Fig. 2).

The results show that all the temperature curves take the
same form and the transient temperature converges to the steady
state with time increasing. Transient process seems to finish
within about 10 µs. Inspection of the results further indicates
that the temperature inside the particle is almost uniform. This
is expected as gold has a much higher thermal conductivity than
the tissue. For this reason, hereafter in Figs. 3 and 4, only one
point on the interface (r = 30 nm) was calculated to represent the
temperature of the whole particle. On this basis, the DPL model
with different values of τq2 and τT 2 was calculated to explore
how these phase lag parameters affect the temperature response
in very short time scale. In Fig. 3, τq1 and τT 1 are assigned the
actual value of gold. The variable τq2 holds constant, while τT 2
varies. The ratio of τq2/τT 2 were assigned from 0.01 to 5.

Evidently, when τT 2 ≤ τq2 , a sharp wavefront was observed
in the temperature history, as shown in Fig. 3(a) where the tem-
perature evolution at the nanoparticle–tissue interface is dis-
played. When τT 2 = 0 (B = 0), the DPL model reduces to the
CV wave equation, and the transient maximal temperature is
almost 13 times as that predicted by the diffusion model (B =
1). The overshooting phenomenon is caused by the significant
phase lag of heat flux of the outer martial. As is well known, in
a DPL model, the microstructural effect and microtime effect
are lumped into two delayed response times to represent the
microscopic heat conduction in a material. The DPL model is
therefore a macroscopic description of the microscopic effect in
both spatial and temporal scales. In the case of τT 2 ≤ τq2 , τT 2
is the cause, and the temperature gradient drives the heat flow.
However, the heat flow from interface to the outer tissue ma-
terial does not follow the temperature gradient simultaneously.
In fact, it lags behind the temperature gradient. Compared with
gold, the surrounding tissue needs a longer time to reach thermal
equilibrium. The τq values of gold and tissue differ greatly, with
the former in the order of picoseconds, while the latter in the
order of microseconds. This implies that before sufficient colli-
sion of phonons in the outer tissue material occurs to allow heat
flow to propagate, heat flux in the gold particle will have diffi-
culty transferring outward, thereby resulting in excessive heat



276 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 8, NO. 3, SEPTEMBER 2009

Fig. 3. Effect of characteristic time on transient temperature response. (a) τT 2 ≤ τq 2 . (b) τT 2 ≥ τq 2 . (c) τT 2/τq 2 = const. and τq 2 varies. (d) τT 2/τq 2 =
const., τT 1/τq 1 = const., and τq 1 varies.

Fig. 4. Temperature distribution, with τT 2 = 0.043 s, τq 2 = 16 s. (a) Temperature versus position and time. (b) Temperature history on the interface of two
media.

accumulating inside the particle. Moreover, since τT 2 is not zero,
the equivalent relaxation time becomes τ2 = τq2 − τT 2 . Obvi-
ously, τ2 decreases with τT 2 increasing, when τq2 is kept un-
changed, which gives rise to a smaller value of B. A decrease in
B leads to a gradually faster response of the outer material to the

transfer of the heat inside the particle. Physically, this decrease
represents the increase of the number of the normal phonon-
collision processes (or momentum-conserving collision) ver-
sus the number of the umklapp processes (or nonmomentum-
conserving collision), the latter being responsible for the heat
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Fig. 5. Dimensionless temperature distribution at different time instant. (a) Diffusion model. (b) DPL model with the actual lagging parameters, i.e., τT 1 = 89 ps,
τq 1 = 0.744 ps, τT 2 = 0.043 s, and τq 2 = 16 s.

flow. If τT 2 = τq2 , τ2 becomes zero, then the phase lag phe-
nomenon disappears, implying an instantaneous response from
the outer material. The case of τT 2 = τq2 gives the same result
as the classical thermal diffusion.

Fig. 3(b) illustrates another situation of the microscale effect,
where temperature gradient lags behind the heat flux vector. The
equivalent relaxation time is negative, which represents the case
of overdiffusion. In this case, heat flux is the cause, driving the
heat flow. Usually, this phenomenon occurs in metal films. For
most dielectric materials, temperature gradient often precedes
the heat flux vector. It can be seen that, a bigger τT 2 produce
a higher rate of thermal diffusion. However, a longer time is
required to reach thermal equilibrium than that predicted by the
classical thermal diffusion model.

Fig. 3(c) shows the case where the ratio of τT 2/τq2 is kept
constant, while τT 2 and τq2 are of different order ranging from
−7 to −11. It is apparent that the larger the phase lag, the higher
the temperature. It should be emphasized that the temperature
is not directly correlated with the ratio. It is the difference of
τq2 − τT 2 that affects the transient temperature response.

In Fig. 3(d), τT 2/τq2 is kept the same as that in Fig. 2(c),
but τq2 = 16e − 7 s. The characteristic time of metal particle is
allowed to vary with τT 1/τq1 held constant. It can be seen that
the overshooting phenomenon is diminished by the increase of
τT 2 and τq2 . Since in this case, τq2 is much larger than τT 2 , τq2
dominates the transient thermal process. With an increase in τT 1
and τq1 , the difference τq2 − τq1 is decreased. This produces a
net result of shortening the response time τq2 . As a result, the
heat inside the particle is quickly delivered to the surrounding
medium without accumulating for long time, thereby relieving
the overheating phenomenon.

The aforementioned analysis shows that the fast transient
heat transfer process dramatically depends on the characteristic
times. The characteristic time of metal is determined to be in the
order of picoseconds. However, the accuracy of the parameters
for nonlattice structural materials is still in dispute. Nonetheless,
the characteristic time of tissue-like material is much larger than
that of metal. In addition, the temperature gradient of tissue-like

material precedes the heat flux. These properties result in the
fast transient temperature inside the particle and slower response
in the tissue, which cannot be predicted by a classical diffusion
model.

Fig. 4(a) shows the normalized dimensionless temperature
distribution versus position and time. It is seen that with time
elapses, temperature inside the particle increases. In addition,
the tissue responses are slower compared to diffusion model,
presented in Fig. 1. At t = 1 µs, the ratio of θ/θs is about 150.
Fig. 4(b) shows the time development of the temperature at
the interface between the particle and the tissue. It appears that
with a tissue relaxation time of 16 s, the maximal temperature
can reach as high as 350 times the steady-state value. Thus, if
the steady-state temperature rises by 0.1 ◦C, the temperature at
one time will reach 35 ◦C at the interface. Since the tempera-
ture field contributed by hundreds of thousands nanoparticles
is quite different from a single case, additional study is needed
to investigate the implication of this fast transient temperature
effect related to the hyperthermia treatment.

B. Temperature Response With a Pulsed Heating Source

In this case, we still investigate the transient thermal response
of a solid spherical gold particle embedded in an infinite tissue-
like medium. As before, the difference of a diffusion model and
the DPL model will be compared first. With the particle material
kept unchanged, as well as the geometry size, initial condition,
and boundary condition, the influence of characteristic time of
surrounding medium on temperature is then studied. Finally, the
effect of time duration of the pulse laser is investigated. The only
exception with the previous case is the constant heating source
replaced by a pulsed laser heating source with a Gaussian profile.
The following parameters were used for the pulsed laser: J =
13.4, R = 0.93, g = 1/15.3, and b = 1.88.

The dimensionless temperature with pulsed heating was cal-
culated by employing the diffusion equation and the DPL equa-
tion, respectively, and the results are shown in Fig. 5. Here,
both the intensity and time duration (tp = 1 ps) of laser are
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Fig. 6. Effect of τq 2 on temporal variation of dimensionless temperature, r = 30 nm.

same. Fig. 5(a) depicts the dimensionless temperature at four
time instants with picoseconds, while Fig. 5(b), with the actual
characteristic time, shows the dimensionless temperature with
nanoseconds. Apparently, the models produce similar tempera-
ture distribution profiles. With time increasing, the dimension-
less temperature decreases. This is because the intensity of the
pulse laser decays with time. At the beginning, heat diffusion
focuses only on the vicinity of the particle. However, with time
increasing, heat gradually diffuses outward. This is caused by
the damping effect of the small thermal conductivity of tissue.

Besides, comparing curve of t = 5000 ps and solid curve of
t = 5 ns [see Fig. 5(b)], we may find the effect of DPL model
on temperature. If we assume that heat flux and temperature
gradient take place simultaneously (diffusion model), at t =
5 ns, the maximal dimensionless temperature θmax appears in
the region of tissue and the value is less than 0.01. However, if
we consider the lagging performance (DPL model), θmax is at
the interface and the value is about 0.45. The phase lag of heat
flux of the tissue τq2 dominates the heat conduction process.

With the purpose of understanding the contribution of the
characteristic time under pulsed heating, Fig. 6(a) shows the
temporal variation of dimensionless temperature at location r
= 30 nm, i.e., the interface between gold particle and the sur-
rounding media with τT 2/τq2 = 0.0026875 and the order of τq2
varying from −8 to −5 s. All the curves follow the fast-up–
slow-down waveform pattern, which corresponds to the profile
of the pulsed heating. Also, with τq2 decreasing, the diffusion
effect becomes evident. In another word, τq2 prolongs the diffu-
sion time for heat delivering. It is interesting to note that at some
instants, the temperature is lower than the initial value, or the di-
mensionless temperature is negative. Moreover, the magnitude
of the negative temperature depends on the characteristic time,
though not linearly. For the values of τq2 studied, the dimen-
sionless temperature attains a minimal point at τq2 = 16e − 7 s.
Further increase in τq2 reduces the magnitude of the nega-
tive temperature. Fig. 6(b) depicts the transient development
of the spatial temperature distribution with τq2 = 16e − 7, cor-
responding to the middle curve in Fig. 6(a). It can be seen that

before 40 ns, the dimensionless temperature remains positive,
and it gradually evolves into the negative inside and around
the particle. The temperature near the interface oscillates both
negatively and positively, displaying the nature of thermal wave
propagation. Eventually, the oscillation vanishes after sufficient
time elapses. As time increases, the thermal wave, generated
by a laser pulse, propagates toward infinity, with the magnitude
gradually decaying due to the dispersive (diffusive) nature of
the materials.

To summarize the factors affecting the temperature distribu-
tion, we believe that the negative temperature is an attribute of
the wave behavior of the energy transport associated with the
hyperbolic description of heat transfer embedded in the DPL
model, as well as the geometry shape. In the present case, a
heating source whose magnitude decays with both location and
time is applied inside the sphere. When heat transfers toward
the center of the sphere, the heat transfer area decreases, since it
is proportional to the radius squared. Thus, the equivalent heat
flux increases when other variables and parameters remained
unchanged. When the thermal wave reaches the center of the
sphere, reflecting thermal wave appears. The negative dimen-
sionless temperature is a consequence of the incoming and re-
flecting thermal waves superimposed. At the early stage (e.g.,
before 0.1 µs), more energy is reflected from the particle as time
increases, implying that the diffusion mechanism caused by τq2
dominates the transient thermal response. Afterwards, the heat-
ing source attenuates rapidly with time, but the heat transfer
area increases. The combination of these two factors causes the
reflective thermal wave to become weaker, and eventually, the
thermal diffusivity of the tissue dominates the thermal process.
The phenomenon of reflection has also been reported in the
literature [16], [17].

VI. CONCLUSION

Within the framework of the DPL model, the transient heat
transfer process of a gold nanoparticle surrounded by tissue was
studied for nanoparticle-based hyperthermia applications. Two
types of heating sources were considered: one by a constant
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heating source, and the other by a pulsed laser. The DPL equa-
tions for both the particle and the medium were written in 1-D
spherical coordinates and solved using the Laplacian transform.
Calculation results show that the temperature predicted by a dif-
fusion equation significantly differs from that by a DPL model.
The heat transfer phenomenon in microscopic domains strongly
depends on both τT and τq . In general, τq contributes the tem-
perature overshooting, exhibiting the wave behavior, while τT

tends to diminish it, displaying a dispersive nature. The overall
thermal behavior is characterized by the lagging phase differ-
ence of the nanoparticle and its surrounding medium. For a gold
nanoparticle embedded in tissue, a bigger τq of tissue has a larger
effect. It causes heat inside the particle to build locally within
a short time. For a constant heating source, the fast transient
temperature may be hundred times bigger than that predicted
by a classical diffusion equation. Such a high temperature may
have a strong implication for hyperthermia treatment and could
result in tissue overheating if not controlled. For heating by
a pulsed laser, the transient temperature development depends
on the time duration of the laser: the shorter the duration, the
smaller the transient temperature.
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