Design of a Double-Sided LCLC Compensated Capacitive Power Transfer System with Predesigned Coupler Plate Voltage Stresses

Jing Lian, Xiaohui Qu, Senior Member, IEEE, Xi Chen, Senior Member, IEEE, and Chunting Chris Mi, Fellow, IEEE

Abstract—A high-performance capacitive power transfer (CPT) system is expected to achieve the load-independent constant output, near-zero reactive power, and soft switching of power switches simultaneously, resulting in a reduced power stage, simple control circuitry, and minimum component ratings. However, a well-compensated CPT system still suffers very high voltage stresses among not only the main coupled plates but also the leakage coupled plates due to the small coupling and edge emission, which increase the risk of air breakdown and deteriorate the electromagnetic interference (EMI) issue. To solve this problem, the voltage stresses among such coupler plates should be predesigned at an acceptable level. This paper systematically analyzes characteristics of a double-sided LCLC compensated CPT converter, which is proved to have enough design freedom providing predesigned voltage stresses for two kinds of coupled plates. Also, three operating frequencies with load-independent constant current (CC) output and input zero-phase angle (ZPA) are found. Without reactive power in the circuit, a parameter design method is proposed for the double-sided LCLC compensated CPT converter at each frequency to satisfy the desired CC output and the predesigned voltage limitations. In this way, the wave shape and EMI issues can be well mitigated by the intended design and this method can also be extended to other CPT circuits. Finally, a CPT prototype is built to verify the theoretical analysis with the predesigned voltage stresses among the coupler plates.

Index Terms—Capacitive power transfer, voltage stresses, LCLC compensation, design freedom, parameter design.

I. INTRODUCTION

Nowadays, the wireless power transfer technology including inductive power transfer (IPT) and capacitive power transfer (CPT) techniques has found many applications due to advantages of convenience, safety, and isolation [1]–[6]. The CPT systems use metal plates as couplers, rather than expensive Litz wires and heavy magnetic cores in IPT converters, which could reduce the cost and weight of the whole system. Also, the power transfer medium of CPT systems, i.e., electric fields, can effectively avoid eddy currents and corresponding losses in the nearby metals [7], [8]. Thus, CPT systems are superior to IPT systems in some applications [9].

The coupled metal plates actually behave as capacitors in the CPT system [10], which generate significant reactive power in the circuit. The large reactive power will increase component ratings and degrade the power transfer capability. Therefore, compensation networks are necessary to improve these performances. Similar to a compensated IPT system [11], a well-compensated CPT system should desirably achieve the following characteristics:

1) Zero phase angle (ZPA) between the input voltage and input current: The realization of input ZPA can eliminate the reactive power in the circuit and then minimize the component volt-ampere (VA) ratings. Thus, the power transfer capability can be improved effectively.
2) Soft switching of the driver circuit: When the input ZPA is permitted, the input impedance can be easily modulated to be from purely resistive to slightly inductive for zero-voltage switching (ZVS) of MOSFETs or slightly capacitive for zero-current switching (ZCS) of IGBTs. Soft switching can further reduce power losses and switching noises.
3) Load-independent constant output: Constant current (C-C) or constant voltage (CV) output is required in many practical applications, such as battery or super-capacitor charging, LED lighting, and so on. A single-stage CPT converter is expected to provide the desired load-independent output so that the front-end or back-end DC/DC regulator can be saved.
To satisfy the above requirements, some compensation circuits in CPT systems have been proposed and analyzed, such as a double-sided LC circuit [12], [13], a double-sided LCLC circuit [14], [15], a four-coil compensation circuit [16], and so on. Some circuit design methods are given to improve transfer efficiency [17]–[19]. Unlike the loosely coupled transformer in IPT systems, coupler plates in CPT systems behave as very small coupling capacitances due to the low dielectric coefficient in the air. Therefore, a large amount of electric field emission is released around the plates, especially on the edge of plates as shown in Fig. 1 [21]. Usually, the plates on the same primary or secondary side are placed closely. From Fig. 1, the edge emission is more serious in the region close to \(P_1 \) and \(P_2 \) or close to \(P_3 \) and \(P_4 \). In this way, there are high voltage stresses on the main coupling capacitors formed by \(P_1 \) and \(P_3 \) or \(P_2 \) and \(P_4 \) and the leakage capacitors formed by \(P_1 \) and \(P_2 \) or \(P_3 \) and \(P_4 \), which can readily exceed the breakdown voltage limitation of 3 kV/mm in the coupler plates [22], and cause a large leakage electric field radiation [23].

To solve the above issues, prior work [24] tries to maximize the coupling capacitance and then decrease voltages on the main capacitors. Reference [16] uses resonant networks and an isolated transformer to regulate input and output voltages of coupler plates, and then voltages on the main coupled capacitors are decreased. Reference [25] reallocates voltage stresses of all compensation components and capacitive couplers by a mathematic calculation based on a double-sided CL compensation circuit.

However, the aforementioned works usually optimize the voltage stresses only on the main coupled plates. From Fig. 1, the voltage stresses on the leakage coupled plates are also critical to be optimized [26]. Reference [27] identifies the relationship of voltage stresses between the main coupler plates and the leakage coupler plates based on a simple double-sided LC compensated CPT system. With a desired load-independent CC output and input ZPA, the double-sided LC compensated CPT system has no freedom to optimize such two kinds of voltage stresses. Therefore, a higher-order compensation circuit is needed here for the voltage optimization of two kinds of coupled plates.

In this paper, a higher-order double-sided LCLC compensated CPT converter with enough design freedom is systematically analyzed to fulfill the predesigned voltage stresses among the coupled plates. Meanwhile, three operating frequencies with load-independent constant current (CC) output and input ZPA are found in Section II. Without reactive power in the circuit, a parameter design method is proposed to satisfy the required CC output and predesigned voltage stresses for both main coupled plates and leakage coupled plates, as detailed in Section III. This method can be readily extended to the other CPT systems. Finally, a 40 W double-sided LCLC CPT system is built and experimental results agree well with the theoretical analysis in Section IV. Section V concludes the paper.

II. CHARACTERISTIC ANALYSIS FOR INPUT ZPA AND LOAD-INDEPENDENT CONSTANT OUTPUT

Fig. 2 shows the schematic of a double-sided LCLC compensated CPT system where the full-bridge inverter generates the high-frequency AC voltage \(u_{AB} \) to power the resonant circuit and two pairs of coupler plates \(P_1, P_2, P_3, \) and \(P_4, L_{f1}, C_{f1}, L_1, \) and \(C_{ex1} \) construct the primary LCLC network while \(L_{f2}, C_{f2}, L_2, \) and \(C_{ex2} \) construct the secondary LCLC network. The structure and dimensions of the coupler are shown in Fig. 3(a) where \(l \) is the plate length, \(d \) is the air distance, and \(d_1 \) is the distance between two plates on the same side. A II-type model with the equivalent primary capacitor \(C_P \), secondary capacitor \(C_S \), and mutual capacitor \(C_M \) can be used in the metal plates, as shown in Fig. 3(b) [28]. The native coupling coefficient \(k_C \) is defined as \(\frac{C_M}{\sqrt{C_P C_S}} \). With \(C_{ex1} \) and \(C_{ex2} \) parallel to equivalent capacitors \(C_P - C_M \) and \(C_S - C_M \) respectively, it defines that

\[
C_1 = C_{ex1} + C_P \quad \text{and} \quad C_2 = C_{ex2} + C_S. \quad (1)
\]

Then the equivalent coupling coefficient \(k \) becomes

\[
k = \frac{C_M}{\sqrt{C_1 C_2}}, \quad (2)
\]

And \(k < k_C \).

To facilitate the analysis, the double-sided LCLC compensated CPT converter in Fig. 2 can be driven by a purely sinusoidal AC voltage source \(U_{in} \), i.e., the vector of the
Then three T networks are given in different color shadows. The secondary divided into three parts in series, i.e., the fundamental component of \(u_{AB} \) and delivers power to an equivalent load \(R_E \), as shown in Fig. 4. With the C filter, \(R_L = \frac{1}{\omega^2 L_L} \). Based on the reciprocity principle, Fig. 4 can be further derived as an equivalent T-type network with \(C_A, C_B, \) and \(C_C \), as shown in Fig. 5. Here, \(C_A, C_B, \) and \(C_C \) satisfy

\[
\begin{align*}
C_A &= \frac{C_1 C_2 - C_M^2}{C_2 - C_M} = \frac{C_1 (1 - k^2)}{1 - k \sqrt{\frac{C_1}{C_2}}} \\
C_B &= \frac{C_1 C_2 - C_M^2}{C_M} = \frac{1 - k^2}{k^2} C_M \\
C_C &= \frac{C_1 C_2 - C_M^2}{C_1 - C_M} = \frac{C_2 (1 - k^2)}{1 - k \sqrt{\frac{C_2}{C_1}}}.
\end{align*}
\]

1) If \(L_{12} \) resonates with \(C_B \) at \(\omega_1 \), \(u_{in1} \) can be transformed to a load-independent current source \(I_1 \) as shown in Fig. 8(b). By (4), \(L_{f2} \) cannot resonate with \(C_{f2} \) at \(\omega_1 \). Thus, it is impossible to realize CC or CV output for \(R_E \) in Fig. 8(b).

2) If \(L_{12} \) cannot resonate with \(C_B \) at \(\omega_1 \), Fig. 8(a) can be converted to Fig. 8(c) by Thevenin’s theorem with a new load-independent voltage source \(U_{in2} \) in series with the parallel connection of \(L_{12} \) and \(\frac{1}{j \omega C_B} \). Design that \(L_{22} \) resonates with \(L_{12} \) paralleled by \(C_B \) and \(L_{23} \) resonates with \(C_{f2} \). Then a load-independent current \(I_2 \) can drive the load \(R_E \) directly as shown in Fig. 8(d).
Following the above analysis, we have

\[\omega_1 = \sqrt{\frac{L_{f1} + L_{11}}{L_{f1}L_{11}C_{f1}}} = \frac{\sqrt{L_{12} + L_{22}}}{L_{12}L_{22}C_{f2}} \]

\[\omega_1 = \frac{1}{\sqrt{L_{13}C_{A}}} = \frac{1}{\sqrt{L_{23}C_{C}}} = \frac{1}{\sqrt{L_{23}C_{f2}}} \]

(7)

Under the constraint of the same set of compensation parameters,

\[L_1 = L_{11} + L_{12} + L_{13} = L_{11} + L_{12} + L_{13} \text{ and} \]

\[L_2 = L_{21} + L_{22} + L_{23} = L_{21} + L_{22} + L_{23}. \]

(8)

Substituting (4) and (7) into (8), we have

\[\omega_1 = \omega_0 \sqrt{1 \pm \frac{1 + (\frac{1}{\omega_0} - 1) \frac{C_f}{C_{f1}} + (\frac{1}{\omega_0} - 1)^2 \frac{C_f^2}{C_{f1}C_{f2}}}{\frac{1}{\omega_0} + (\frac{1}{\omega_0} - 1)(\frac{C_f}{C_{f1}} + \frac{C_f}{C_{f2}}) + (\frac{1}{\omega_0} - 1)^2 \frac{C_f^2}{C_{f1}C_{f2}}}}. \]

(9)

Although a new load-independent CC output can be found at \(\omega_1 \) in Fig. 8(d), the input impedance cannot be guaranteed to be resistive. To ensure the input ZPA, a transmission matrix \(A_T \) of the CPT system is introduced here, which satisfies

\[\begin{bmatrix} U_{in} \\ I_{in} \end{bmatrix} = A_T \begin{bmatrix} U_r \\ I_r \end{bmatrix} = \begin{bmatrix} a_{11} & j a_{12} \\ j a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} U_r \\ I_r \end{bmatrix}. \]

(10)

The CPT converter can still be divided into three T networks with matrices \(A_1, A_2, \) and \(A_3 \) as shown in Fig. 5 where \(L_{11,12,13,21,22,23} \) should be \(L_{11,12,13,21,22,23}. \) By the basic theory of two-port network,

\[A_T = A_1 A_2 A_3 = \begin{bmatrix} a'_{11} & a'_{12} \\ a'_{13} & a'_{14} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} \\ a_{23} & a_{24} \end{bmatrix} \begin{bmatrix} a'_{31} & a'_{32} \\ a'_{33} & a'_{34} \end{bmatrix}. \]

(11)

Matrices \(A_1, A_2, \) and \(A_3 \) are given by

\[A_1 = \begin{bmatrix} 1 - \frac{1}{\omega_0^2} L_{12} C_{f1} & 0 \\ 0 & \frac{1 - \omega_0^2 L_{11} C_{f1}}{j \omega_0 C_{f1}} \end{bmatrix}, \]

\[A_2 = \begin{bmatrix} 1 - \frac{1}{\omega_0^2} L_{12} C_{fB} & 0 \\ 0 & \frac{1 - \omega_0^2 L_{12} C_{fB}}{j \omega_0 C_{fB}} \end{bmatrix}, \]

\[A_3 = \begin{bmatrix} 0 & \frac{1 - \omega_0^2 L_{23}}{j \omega_0 C_{f2}} \\ \frac{j \omega_0 C_{f2}}{1 - \omega_0^2 L_{23} C_{f2}} & 0 \end{bmatrix}. \]

(12)

By solving (11) and (12), \(a_{11} = a'_{11} (a'_{11} a_{22} + a'_{12} a_{23}) + a'_{13} (a'_{11} a_{22} + a'_{12} a_{23}) = 0. \) Then the input impedance of the CPT circuit can be expressed as

\[Z_{IN} = \frac{U_{in}}{I_{in}} = \frac{j a_{12}}{a_{22} + j a_{21}} = \frac{a_{21} a_{12} R_E + j a_{12} a_{22}}{a_{22} + a_{22} R_E^2}. \]

(13)

If \(Z_{IN} \) is purely resistive, \(a_{12} a_{22} = 0 \) from (13). If \(a_{12} = 0, \) the input impedance is always zero, which is not practical. Therefore, \(a_{22} = 0. \) By (11),

\[a_{22} = a'_{22} (a'_{13} a_{21} + a'_{14} a_{23}) + a'_{14} a_{24} a_{34} = (C_{f1} C_{2} - C_{f1} C_{f2}) \frac{\omega_1^2 - \omega_0^2}{C_{M} C_{f2}^2 \omega_0^2} = 0. \]

(14)

So, a ZPA design constraint is obtained as

\[C_{f1} C_{2} - C_{f1} C_{f2} = 0 \]

(15)

Substituting (15) into (9), the other two frequencies \(\omega_{1H,1L} \) with input ZPA and load-independent CC output can be given as

\[\omega_{1H} = \omega_0 \sqrt{1 + \alpha} \text{ and } \omega_{1L} = \omega_0 \sqrt{1 - \alpha}, \]

(16)

where \(\alpha = \frac{\sqrt{(1-k^2)(C_{f2}^2 - C_{f1}^2)}}{1+(1-k^2) C_{f2}^2}. \)

The load-independent CC current \(I_{r2} \) and the input impedance \(Z_{IN2} \) at \(\omega_{1H} \) and \(\omega_{1L} \) are identical and given by

\[I_{r2} = -j \frac{\omega_1 C_M}{k^2} \left(1 - k^2 + \frac{1}{\beta} \right) U_{in} \]

(17)

\[Z_{IN2} = \frac{k^4 \beta^2}{(1 - k^2) \beta + 1} \omega_1^2 C_M^2 R_E \]

(18)

where \(\beta = \frac{C_{f2}}{C_{f1}} = \frac{C_{f2}}{C_{f2}}. \)

In summary, with so many compensation components, i.e., \(C_{f1,2}, L_{f1,2}, C_{1,2} \) and \(L_{1,2} \), the double-sided LCLC compensated CPT converter has three ZPA frequencies with load-independent CC output and may have enough design freedom to optimize the voltage stresses among coupler plates, which will be analyzed in the next Section.

III. DESIGN AND IMPLEMENTATION OF CPT CONVERTER WITH VOLTAGE STRESS OPTIMIZATION

A. Design Freedom and Optimization Theory

As analyzed in Section II, the double-sided LCLC compensated CPT converter can be designed at \(\omega_1 \) or \(\omega_2 \) to realize input ZPA and output load-independent constant current. As shown in Fig. 2, the input DC voltage \(U_{DC} \) can be modulated by \(Q_{1,2,3,4} \) with \(D \) being the duty cycle of \(u_{AB} \) in one half cycle. The fundamental component of \(u_{AB} \), denoted as \(u_{IN} \), is given as

\[u_{IN}(t) = \frac{4U_{DC}}{\pi} \sin \frac{\pi D}{2} \sin \omega t. \]

(19)

By (5) and (17), the output current \(I_{O1} \) at \(\omega_0 \) and \(I_{O2} \) at \(\omega_1 \) under \(C \) filter should be given as

\[\begin{cases} I_{O1} = \frac{8}{\pi^2} \frac{\omega_0 k^2 C_{f1} C_{f2} U_{DC}}{C_M (1 - k^2)} \sin \frac{\pi D}{2} \\ I_{O2} = \frac{8}{\pi^2} \frac{\omega_1 C_M}{k^2} \left(1 - k^2 + \frac{C_{f2}}{C_{f1}} \right) U_{DC} \sin \frac{\pi D}{2} \end{cases} \]

(20)

From (20), with the given \(U_{DC} \), coupler parameter \(C_M \), and operating frequency, both \(I_{O1} \) and \(I_{O2} \) are functions of \(C_{f1}, C_{f2}, C_1 \), and \(C_2 \). Meanwhile, it should be noticed that \(L_{f1}, L_{f2}, L_1, \) and \(L_2 \) are also the functions of \(C_{f1}, C_{f2}, C_1 \), and \(C_2 \) by (4) and (7). Therefore, with one constraint of (20), the double-sided LCLC compensated CPT converter has the design freedom to optimize \(u_{CM}, u_{1}, \) and \(u_2 \) with four independent control variables \(C_{f1}, C_{f2}, C_1, \) and \(C_2 \). It is the reason why the low order compensation circuit cannot optimize all voltages among the coupler plates. For example, the double-sided LC compensated CPT converter only has two
independent variables C_1 and C_2, so that voltage stresses of u_1 and u_2 can not be designed below the given values in [27].

For any CPT system, the key coupler plates can be modeled as a II-type network as shown in Fig. 4. Assuming all reactive components are lossless, the transferred real power P of the CPT converter is actually the power transferred via the II-type network. Therefore, we have

$$\begin{align}
P &= \frac{1}{2} \omega C_M U_1 U_2 \sin \varphi \\
U_{CM}^2 &= U_1^2 + U_2^2 - 2U_1 U_2 \cos \varphi \geq 2U^2(1 - \cos \varphi) \tag{21}
\end{align}$$

where $P = I_O^2 R_L$, U_{CM} is the magnitude of u_1 and u_2 and φ is the phase angle between u_1 and u_2. The minimum U_{CM} occurs when $U_1 = U_2 = U$. By solving (21), it can be written as

$$U_{CM} = \sqrt{2U} \sqrt{1 \pm \sqrt{1 - \left(\frac{2P}{\omega C_M U^2}\right)^2}} \tag{22}$$

where \pm is decided by φ with $-\frac{\pi}{2}, \frac{\pi}{2}$ and $+\pi$. From (22) makes sense,

$$\omega \geq \frac{2P}{2U} \geq \frac{2P}{C_M U_{max}^2} \tag{23}$$

where U_{max} is the given maximum voltage of u_1 or u_2. Besides, the maximum voltage $U_{CM,\max}$ of U_{CM} is usually given to avoid the air breakdown and EMI issue. From (22), with the given output power P, coupler parameter C_M, U_{max}, and $U_{CM,\max}$, the operating frequency ω should be considered carefully besides the constraint of (23).

With the above consideration, (22) can be rewritten as

$$\omega = \frac{4P}{C_M U_{CM} \sqrt{4U^2 - U_{CM}^2}} \tag{24}$$

The relationship of ω to U and U_{CM} can be judged by

$$\frac{\partial \omega}{\partial U} = -\frac{16PU}{C_M U_{CM} \sqrt{(4U^2 - U_{CM}^2)^3}} \tag{25}$$

$$\frac{\partial \omega}{\partial U_{CM}} = \frac{8P(U_1^2 - U^2)}{C_M U_{CM} \sqrt{(4U^2 - U_{CM}^2)^3}} \tag{26}$$

According to (25) and (26), $\frac{\partial \omega}{\partial U_{CM}} < 0$ while $\frac{\partial \omega}{\partial U_{CM}}$ depends on the relationship between U_{CM} and $\sqrt{2U}$.

1) If $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $U_{CM} \geq \sqrt{2U}$ in (22). From (26), $\frac{\partial \omega}{\partial U_{CM}} < 0$. Therefore, with the given U_{max} and $U_{CM,\max}$, the minimum ω can be readily determined by

$$\omega \geq \frac{4P}{C_M U_{CM,\max} \sqrt{4U_{max}^2 - U_{CM,\max}^2}} \tag{27}$$

2) If $\varphi \in [-\pi, -\frac{\pi}{2}]$ or $[\frac{\pi}{2}, \pi]$, $U_{CM} \geq \sqrt{2U}$. From (26), $\frac{\partial \omega}{\partial U_{CM}} > 0$. It is hard to determine a minimum ω by (24). So we should check the relationship between U_{CM} and U. From (22) with $+$, it is evident that $\frac{\partial U_{CM}}{\partial \varphi} > 0$, and then we have $U_{CM} \geq \sqrt{2U}$. Substitute $U \geq \frac{2P}{\omega U_{CM}}$ by (23) into $U_{CM} \geq \sqrt{2U}$, and we have

$$\omega \geq \frac{4P}{C_M U_{CM}^2} \geq \frac{4P}{C_M U_{CM,\max}} \tag{28}$$

Summarily, for any CPT converter with enough independent variables, the operating angular frequency ω can be designed by (23) and (27) for $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ or by (23) and (28) for $\varphi \in [-\pi, -\frac{\pi}{2}]$ or $[\frac{\pi}{2}, \pi]$, satisfying the requirement of output power, given coupler plates and given coupler plate voltage stresses. The range of φ should be analyzed for the detailed CPT topology.

B. Phase Angle for Different Angular Frequencies

The phase angle φ between u_1 and u_2 for a double-sided LCLC compensated CPT converter as shown in Fig. 2 can be determined by the expressions of vectors U_1 and U_2, as given in (29) at ω_0 and (30) at ω_1, i.e., ω_1H, L_1.

$$\begin{align}
U_{1,\omega_0} &= \left(1 - \frac{L_1}{L_{f1}} + \frac{1}{j \omega_0 C_1 Z_{IN1}}\right) U_{in} \\
U_{2,\omega_0} &= \left[R_E \left(1 - \frac{L_2}{L_{f2}}\right) - \frac{1}{j \omega_0 C_{f2}}\right] I_{in} \tag{29}
\end{align}$$

From (4), $L_1 > L_{f1}$ and $L_2 > L_{f2}$. From (6), $Z_{IN1} > 0$. Substituting (5) into (29), we have $R(U_1) < 0$, $\Im(U_1) < 0$, $R(U_2) < 0$ and $\Im(U_2) < 0$. Thus, both U_1 and U_2 are located at the third quadrant at ω_0 as shown in Figs. 9(a) and (b) where $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Similarly, if the CPT converter operates at ω_1,

$$\begin{align}
U_{1,\omega_1} &= \left[\gamma - \frac{j \omega_1 L_{f1}}{Z_{IN2}} \left(\gamma + \frac{\omega_1^2}{\omega_0^2} (1 - \gamma)\right)\right] U_{in} \\
U_{2,\omega_1} &= \left[R_E + j \omega_1 L_{f2} \left(\gamma + \frac{\omega_1^2}{\omega_0^2} (1 - \gamma)\right)\right] I_{in} \tag{30}
\end{align}$$

where $\gamma = 1 - \frac{1}{\omega_0^2} \left(1 + \frac{1}{(1 - \beta)^2}\right)$. If the CPT converter works at ω_1H, $\frac{\omega_1}{\omega_0} = 1 + \alpha (by (16)) > 0$. So $\gamma < 0$. The expression of $\gamma + \frac{\omega_1^2}{\omega_0^2} (1 - \gamma)$ can be derived to be always negative. From (18), $Z_{IN2} > 0$. Substituting (17) into (30), we have $R(U_1) < 0$, $\Im(U_1) > 0$, $R(U_2) < 0$ and $\Im(U_2) > 0$. Thus, both U_1 and U_2 are located at the third quadrant with $\varphi \in [-\frac{3\pi}{2}, \frac{\pi}{2}]$, as shown in Figs. 9(c) and (d). If the CPT converter works at ω_1L, $\frac{\omega_1}{\omega_0} = -1 - \alpha$. The expression of $\gamma + \frac{\omega_1^2}{\omega_0^2} (1 - \gamma)$ can be derived to be always positive. Thus, $\Im(U_1) < 0$ and $\Im(U_2) > 0$. But the polarity of γ can not be uniquely determined by

$$\gamma |_{\omega_1L} = \frac{\sqrt{(1 - k^2)^2 \beta^4 + (1 - k^2)^2 + k^2 - 1}}{(1 - k^2)^2} \tag{31}$$

There are two cases for γ.

1) If $\beta < \frac{\sqrt{(1 - k^2)^2 + 1}}{1 - k^2}$, $\gamma < 0$. Then $R(U_1) < 0$ and $\Im(U_2) > 0$. Thus, U_1 is located at the third quadrant and U_2 is located at the first quadrant at ω_1H, as shown in Figs. 9(e) and (f). So $\varphi \in [-\pi, -\frac{\pi}{2}]$ or $[\frac{\pi}{2}, \pi]$.

2) If $\beta > \frac{\sqrt{(1 - k^2)^2 + 1}}{1 - k^2}$, $\gamma > 0$. Then $R(U_1) > 0$ and $\Im(U_2) < 0$. Thus, U_1 and U_2 are both located at the fourth quadrant with $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, as shown in Figs. 9(g) and (h).

From Section III-A, in the double-sided LCLC compensated CPT converter, the operating angular frequencies ω_0 and ω_1H
should be designed by (23) and (27) due to \(\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \). The operating angular frequency \(\omega_{1L} \) can be designed by (23) and (27) for \(\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \) or by (23) and (28) for \(\varphi \in [-\pi, -\frac{\pi}{2}] \) or \(\left[\frac{\pi}{2}, \pi \right] \). But it should be noticed that the operation range of \(\varphi \) is determined by the relationship between \(\beta \) and \(\frac{\pi}{2} - \frac{\pi}{2} (1 - k^2) \).

Therefore, if the CPT converter is designed at \(\omega_{1L} \), \(\beta \) and \(k \) can be solved by the next Section III-C, and \(\varphi \) must be rechecked to satisfy the predesigned range.

C. Parameter Design Process

From Section III-B, the phase angle \(\varphi \) of the double-sided LCLC compensated CPT converter has two cases. With the predesigned \(U_{CM\max} \), \(U_{\max} \), \(I_O \), \(C_M \), \(U_{DC} \), and full output power \(P \), the operating angular frequencies \(\omega_0 \), \(\omega_{1H} \), and \(\omega_{1L} \) can be calculated in a range by (23) and (27) or by (23) and (28). Select \(\omega \) as the operating angular frequency, (23) can be rewritten as

\[
\sqrt{\frac{2P}{\omega C_M^2}} \leq U \leq U_{\max}. \tag{32}
\]

Meanwhile, \(U_{CM} \leq U_{CM\max} \). With (22), two cases of \(\varphi \) should be considered.

1) If \(\varphi \in \left[\frac{\pi}{2}, \frac{\pi}{2} \right] \), substitute \(U_{CM\max} \) into (22) with \(-\) and solve \(U \) as \(U_{sol1} \). The relationship between \(U \) and \(U_{CM} \) can be determined by

\[
\frac{\partial U_{CM}}{\partial U} = \frac{\sqrt{2}}{\sqrt{1 - \frac{4P^2}{\omega^2 C_M^2 U^4}}} \cdot \left(1 - \frac{1}{\sqrt{1 - \frac{4P^2}{\omega^2 C_M^2 U^4}}} \right) < 0. \tag{33}
\]

Thus,

\[
U \geq U_{sol1}. \tag{34}
\]

2) If \(\varphi \in [-\pi, -\frac{\pi}{2}] \) or \(\left[\frac{\pi}{2}, \pi \right] \), substitute \(U_{CM\max} \) into (22) with \(+\) and solve \(U \) as \(U_{sol2} \). Due to \(\frac{\partial U_{CM}}{\partial U} > 0 \) at this
\[U \leq U_{\text{soln2}}. \]

From (32) and (34) or (35), \(U \) can be selected to guarantee \(U_{\text{CM}} \leq U_{\text{CM,max}} \). Then we can combine four equations to solve four independent parameters \(C_{f1}, C_{f2}, C_1, \) and \(C_2 \), which include \(U_1 = U_2 = U \) by (29) or (30), \(I_0 = I_{O1} \) or \(I_0 = I_{O2} \) by (20) and (15) for \(\omega_1 \). Here, it should be noted that there are only three equations for \(\omega_0 \) case. Therefore, one parameter among \(C_{f1}, C_{f2}, C_1, \) and \(C_2 \) can be predesigned, for example, \(C_1 = C_2 \). The detailed design process is given in Fig. 10. From Fig. 10, \(\varphi \) must satisfy one case of \(|\varphi| < \frac{\pi}{2} \) or \(\frac{\pi}{2} < |\varphi| < \pi \) at least. Thus, if one case is not satisfied, there is no solution and \(\varphi \) can satisfy the other case to find the solution. The operating frequency could be selected according to the requirements of applications, product volume, cost, efficiency, and EMI issues.

D. Soft Switching Realization

Fig. 11 shows the normalized output current and phase angle versus normalized parameters at \(\omega_0, \omega_1H \) and \(\omega_1L \), respectively. From Figs. 11 (a) and (b), it can be seen that the output current is not sensitive to \(L_1 \) and \(L_2 \) variations at \(\omega_0 \). Then the smaller \(L_1 \) and \(L_2 \) will permit the ZVS of CPT converters, which is consistent with the results in [15]. Similarly, the output current is not sensitive to the variation of \(L_2 \) at both \(\omega_1H \) and \(\omega_1L \) from Figs. 11 (c) and (e). A small decrement of \(L_2 \) can ensure ZVS from Figs. 11 (d) and (f).

IV. Experiment Verification

To verify the above analysis, a 40 W double-sided LCLC compensated CPT prototype is built to provide a constant current of 2 A, as shown in Fig. 12. The length \(l \) of each coupler plate is 200 mm and the air distance \(d \) is 6 mm. The distance \(d_1 \) between two plates in the same primary or secondary side is 10 mm. The equivalent parameters can be measured as \(C_M = 35 \) pF and \(C_P = C_S = 40 \) pF. The input DC voltage is 24 V and the duty cycle is set as 0.95. The predesigned maximum voltage stress \(U_{\text{CM,max}} \) is 800 V and \(U_{\text{max}} \) is 1200 V.

From Fig. 10, the operating frequency can be calculated as \(f \geq 402 \) kHz for \(f_0, f_{1H,1L} \) and \(\varphi \in \left[-\pi, -\frac{\pi}{2} \right] \), while \(f \geq 1.14 \) MHz for \(f_{1L} \) and \(\varphi \in \left[-\pi, -\frac{\pi}{2} \right] \) or \(\left[\frac{\pi}{2}, \pi \right] \). If \(f \) is designed at 500 kHz as \(f_{0}, f_{1H,1L} \) for \(\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \), the calculated \(U \) belongs to [994 V, 1200 V] and \(U_{\text{CM}} \) belongs to [629 V, 800 V]. If \(f \) is designed as 1.5 MHz as \(f_{1L} \) for \(\varphi \in \left[-\pi, -\frac{\pi}{2} \right] \) or \(\left[\frac{\pi}{2}, \pi \right] \), \(U \) belongs to [493 V, 502 V] and \(U_{\text{CM}} \) belongs to [697 V, 800 V]. We choose \(U_{\text{CM}} = 750 \) V with a design margin and the calculated \(U, C_{f1,2}, C_{\text{ex1,2}}, L_{1,2}, L_{f1,2} \) are given in Table I. It should be noted there is no solution for \(f_{1L} \) when \(\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \). The CPT converter can be designed to work at \(f_0 \) or \(f_{1H} \) of 500 kHz in the consideration of the implementation of the inventor, efficiency, and EMI issues [29]. Comparing the inductor sizes at two frequencies listed in Table I, \(f_{1H} \) of 500 kHz is used here. A microcontroller TMS320F28335 and the gate driver 1EDI20N12AF are used to drive \(Q_{1,2,3,4} \).

Fig. 13 shows the experimental waveforms of gate-source voltage \(u_{\text{GS1}} \) for MOSFET \(Q_1 \), modulated voltage \(u_{\text{AB}} \), input
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2020.3030657, IEEE Journal of Emerging and Selected Topics in Power Electronics

Fig. 13. Experimental waveforms of u_{GS1}, u_{AB}, i_{IN}, and I_O at (a) half load and (b) full load.

Fig. 14. Experimental waveforms of u_{GS1}, u_{C13}, u_1, and u_2 at full load.

(a) $R_L = 5 \, \Omega$

(b) $R_L = 10 \, \Omega$

Fig. 15. Voltages U_{CM}, U_1 and U_2 under (a) X-axis misalignment and (b) Y-axis misalignment.

current i_{IN} and output current I_O for half load of $R_L = 5 \, \Omega$ and full load of $R_L = 10 \, \Omega$. It is found that the output current keeps at the required 2 A independent of the load. The small phase angle of i_{IN} lagging u_{AB} facilitates ZVS of the full-bridge switches. To verify the voltage stress optimization, voltage waveforms of u_{GS1}, u_{C13}, u_1, and u_2 at full load are given in Fig. 14. From Fig. 14, the measured U_1 and U_2 are 1030 V and 985 V, which are close to the theoretical values and the small difference is caused by the capacitor tolerance. U_{C13} is measured as 380 V where $U_{CM} \approx 2U_{C13}$, which is also consistent with the value in Table I. The experimental results show good agreement with the calculated values. If the plate misalignment happens, the secondary plates of P_3 and P_4 may move in X-axis or Y-axis direction as shown in Fig. 3 (a). Fig. 15 gives the maximum voltage variations of calculated U_{CM} (i.e., $2U_{C13}$), U_1, and U_2 under the X-axis and Y-axis misalignment percentages to the plate length. It can be seen that a small misalignment for X-axis or Y-axis is permitted with the predesigned voltage stresses. The efficiency of the CPT converter is measured around 83% at full load and the losses mainly distribute in the coupler plates, magnetic inductors, and rectifier diodes, which is not the key and omitted in this paper.

To further show the electric field emission reduction with the proposed design method, Fig. 16 (a) gives the voltage waveforms of u_{C13}, u_1 and u_2 at the same output current and full load for the double-sided LCLC CPT circuit using conventional symmetric parameters, i.e., $C_{ex1} = C_{ex2} = 145 \, pF$, $C_{f1} = C_{f2} = 6 \, nF$, $L_1 = L_2 = 731 \, \mu H$, and $L_{f1} = L_{f2} = 21 \, \mu H$. Compared to Fig. 16 (b) with the proposed parameter.
design, the voltage stresses of U_1 and U_2 are much larger although U_{C13} decreases. Thus, the electric field emissions around the coupler plates are much larger than those in the proposed design, as shown in Fig. 17.

V. CONCLUSION

To reduce the risk of air breakdown and mitigate the electromagnetic interference (EMI) issue in a capacitive power transfer (CPT) system, the voltage stresses among both the main coupled plates and the leakage coupled plates should be optimized in the acceptable levels. In this paper, a double-sided LCLC compensated CPT circuit is proved to have enough design freedom to optimize the voltage stresses among the coupler. Meanwhile, three frequencies are found in the double-sided LCLC compensated CPT circuit to realize input zero-phase angle (ZPA) and load-independent constant current (CC) output simultaneously, which can facilitate a reduced power stage, simple control circuitry, and high transfer efficiency. Also, a parameter design method is proposed to realize the required load-independent CC output and the predesigned voltage stresses at each frequency. The method can be readily extended to the other CPT systems. Experimental results have validated the theoretical analysis well.

REFERENCES

Jing Lian received the BEng degree in electrical engineering from China University of Mining and Technology, Xuzhou, China, in 2015. She is currently working toward the PhD degree in electrical engineering in Southeast University, Nanjing, China.

Her current research interest mainly includes wireless power transfer.
Xiaohui Qu (M’10–SM’19) received the BEng and MEng degrees in electrical engineering from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2003 and 2006, respectively, and the PhD degree in power electronics from the Hong Kong Polytechnic University, Hong Kong, in 2010.

From February to May 2009, she was engaged as a Visiting Scholar at the Center for Power Electronics Systems, Virginia Tech, VA, USA. Since 2010, she joined the School of Electrical Engineering, Southeast University, China, where she is currently a full Professor with research focus on power electronics. From January 2015 to January 2016, she was a Visiting Scholar with the Center of Reliable Power Electronics (CORPE), Aalborg University, Denmark. Her current research interests include LED lighting systems, wireless power transfer, and power electronics reliability.

Dr. Qu received the Outstanding Reviewer Award and the Prize Paper Award from IEEE TRANSACTIONS ON POWER ELECTRONICS in 2017 and 2018.

Xi Chen (S’07–M’13–SM’16) received BEng from Beijing Technology and Business University, Beijing, China, MSc from Kings College London, University of London, London, U.K. and PhD from the Hong Kong Polytechnic University, Hong Kong, SAR, in 2003, 2005 and 2009, respectively.

He was a Postdoctoral Research Fellow at the Institute of Software, Chinese Academy of Science. He was a Visiting Student at the University of Florida in 2008. In 2014, he joined GEIRI North America, San Jose, CA, USA, where he currently is the Chief Information Officer. From 2009 to 2014, he was with State Grid Corporation of China, Beijing, China. His research interests include nonlinear dynamics, Internet of Things, smart grids, and electric vehicle charging.

He servers as Associate Editor of IEEE Systems Journal. He served as Guest Editor of IEEE Transactions on Intelligent Transportation System: Enabling Extreme Fast Charging Technology for Electric Vehicles.

Chunting Chris Mi (S00–A01–M01–SM03–F12) received the BSEE and MSEE. degrees in electrical engineering from Northwestern Polytechnical University, Xian, China, and the PhD degree in electrical engineering from the University of Toronto, Toronto, Ontario, Canada, in 1985, 1988, and 2001, respectively.

He is a Professor and the Chair of electrical and computer engineering and the Director of the Department of Energy-funded Graduate Automotive Technology Education Center for Electric Drive Transportation, San Diego State University (SDSU), San Diego, CA, USA. Prior to joining SDSU, he was with with the University of Michigan, Dearborn, MI, USA, from 2001 to 2015.

Dr. Mi received the Distinguished Teaching Award, the Distinguished Research Award of University of Michigan, Dearborn, the 2007 IEEE Region 4 Outstanding Engineer Award, the IEEE Southeastern Michigan Section Outstanding Professional Award, and the SAE Environmental Excellence in Transportation (E2T). He has also served as a Panelist in major IEEE and SAE conferences.