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Learning of Battery Model Bias for Effective State of
Charge Estimation of Lithium-Ion Batteries

Zhimin Xi
and Chris Mi

Abstract—State of charge (SOC) estimation of lithium-ion bat-
teries has been extensively studied and the estimation accuracy was
mainly investigated through the development of various battery
models and dynamic estimation algorithms. All battery models,
however, contain inherent model bias due to the simplifications
and assumptions, which cannot be effectively addressed through
the development of various algorithms such as Kalman filtering
(KF) or particle filtering (PF). Consequently, as observed in some
study, battery SOC estimation using a typical extended KF in
fact is not very accurate where the error could range from 5%
to 10% or even more depending on the battery characteristics.
This paper proposes bias characterization of the battery model, so
that accuracy of the baseline model could be significantly improved
and eventually SOC estimation could be much more accurate than
the one only using the baseline model. This paper reports great
potential for improving battery SOC estimation with the bias char-
acterization and proposes two methods for actual bias modeling.
In particular, the polynomial regression model and the Gaussian
process regression model are proposed to examine the effects of the
two methods on bias modeling and SOC estimation using a typical
battery circuit model. Results are demonstrated in both simulation
and lab testing using three battery charging/discharging profiles
with the cross-validation technique.

Index Terms—Battery model bias, lithium-ion battery, SOC es-
timation, Gaussian process regression, battery circuit model.

1. INTRODUCTION

OC estimation of lithium-ion batteries has been extensively
S studied through the development of various battery models
and dynamic estimation algorithms. In general, battery mod-
els can be classified into three categories: i) electrochemical
models [1]-[4], ii) equivalent circuit models (ECMs) [S]-[8],
and iii) machine learning models [9]-[11]. Electrochemical
models are typically computationally expensive where a set
of non-linear differential equations should be solved to esti-
mate the battery performances of interest. ECMs are simplified
semi-physics-based models with high computational efficiency
but the accuracy is compromised in addition to the limited
capability of considering other important parameters such as
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the operation temperature of the battery. Machine learning
models are empirical-based models and the performance is
largely dependent on the similarity between the battery training
and actual operating conditions. Since battery SOC dynamically
changes depending on the charging/discharging profile, vari-
ous algorithms have been developed for estimating the hidden
yet evolving model parameter (i.e., battery SOC) including
the Kalman filter (KF) [12], the extend KF (EKF) [13], the
unscented KF (UKF) [14], and the particle filter (PF) [15].
The major difference of these algorithms lies in the degree of
simplifications of the battery model for the SOC estimation. KF
applies only for linear battery model. EKF linearizes a nonlinear
battery model at different time steps. UKF intends to accurately
predict the nonlinearity of the battery model with a minimum
set of chosen samples. PF directly runs sequential Monte Carlo
simulation based on the actual nonlinearity of the battery model.
Apparently, there is a tradeoff among the algorithm efficiency,
accuracy, and complexity running on a chosen battery model.

As pointed out in authors’ previous work [16], five types
of uncertainty play a key role for reliable estimation of the
battery performances of interest and they can be classified as: 1)
measurement uncertainty from sensors, ii) algorithm uncertainty
based on algorithm characteristics, iii) environmental uncer-
tainty such as temperature and various loading conditions, iv)
model parameter uncertainty due to the cell-to-cell variability,
and v) model uncertainty due to the inherent model inadequacy
from model simplifications and assumptions. Related work in
each category is briefly reviewed as follows.

1) Sensor measurement uncertainty: Although typical filter-
ing algorithms consider sensor measurement uncertainty,
their mean values are usually assumed to be zero which
may not be realistic considering actual sensor measure-
ment errors. Battery SOC estimation error due to non-
zero mean of the sensor measurement error (or bias) was
recently studied using both the least square estimation
and the EKF, and the estimation errors were theoretically
derived and validated through experiments [17], [18].

ii) Algorithm uncertainty: The essential purpose of various

filtering algorithms [12]-[15] is to reduce the algorithm
error for battery states estimation while maintaining high
computational efficiency.
Environmental uncertainty: Temperature and loading con-
ditions are the most important factors influencing the
battery characteristics such as capacity, resistance, open
circuit voltage (OCV), etc. [19]-[21].
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iv) Model parameter uncertainty: This type of uncertainty
is mainly due to the cell-to-cell variability caused by
manufacturing tolerance such that each cell should have its
unique parameter set corresponding to a particular battery
model. An early study conducted by Lin et al. [22] inves-
tigated battery SOC and voltage estimation errors with
inaccurate model parameters and they found that SOC
estimation error was unavoidable even though voltage
error could be insignificant. Such parameter uncertainty
was examined by Jing et al. [16] for EIG C020 cells
and battery SOC was further estimated considering the
parameter uncertainty. A recent study also investigated
the battery pack SOC variability due to the cell-level
parameter uncertainty [23].

v) Model uncertainty: One of the basic objectives of de-
veloping various battery models [1]-[11] is to improve
the model prediction accuracy, or in other words to re-
duce model prediction bias, under various conditions.
For example, an extended ECM (EECM) based on the
single-particle electrochemical model was proposed to
improve the model estimation accuracy especially in the
low SOC area [24]. Nevertheless, none of the model would
be perfect without any errors. Hence, in addition to the
model development, identification and characterization of
model uncertainty of a baseline model could be an alterna-
tive option to dramatically improve the model estimation
accuracy. In the early work conducted by Jing et al. [16],
bias of individual battery cell was calculated and average
of the bias from training cells was then applied to the
testing cell under the same battery operating condition, in
which noticeable SOC accuracy improvement had been
reported. However, the major limitation is that the train-
ing and test cells were under the same charge/discharge
profile. Mishra et al. [25] derived an exact model bias
form based on the high-order and low-order RC circuit
models and further verified such model bias using both
simulations and experiments. It is worth noting that such
bias derivation can only be conducted with an assumed
“true” or high-fidelity reference model which may never
exist in reality. Hence, learning of model bias through
actual experiments under some training conditions would
be more practical. Nevertheless, above work [16], [25]
clearly demonstrated the benefits if the model bias could
be identified or properly learned.

The contribution of this paper is three-fold: i) propose general
bias learning and modeling framework for lithium-ion battery
models so that fidelity of the baseline model could be sig-
nificantly improved under different operating conditions with-
out compromising the computational efficiency; ii) compare
a typical machine learning method and a classical parametric
regression model for the effectiveness of bias modeling; and iii)
recommend the machine learning method for bias modeling due
to its effectiveness and great potential for further improvement.
In particular, two methods including the polynomial regression
and the Gaussian process (GP) regression model are proposed
for bias modeling and their effects on battery voltage and
SOC estimation are studied under different battery operating
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conditions. Furthermore, based on an extensive comparison
study conducted for battery circuit models [5], the first- and
second- order RC models are chosen as two baseline battery
models due to the overall high accuracy and efficiency in lithium-
ion battery modeling.

The rest of the paper is organized as follows. Section II briefly
reviews the first- and second- order RC models [5] which are em-
ployed in this study as two baseline battery models. Section III
first proposes general framework for considering the model bias
in battery performance estimation, then elaborates two feasible
methods for the bias characterization and approximation. Sec-
tion IV demonstrates the effectiveness of the proposed method
through both simulations and laboratory experiments. Section V
concludes the paper and discusses future work on generalization
of the bias modeling considering the cell-to-cell variability and
aging effects.

II. REVIEW OF THE RC CIRCUIT MODEL

Battery hidden states such as SOC and state of health (SOH)
are usually estimated using a discrete time state-space model as

{ xp = fap_1,ur) + Wy

(1)
Y = g(zk, ur) + vk

where zy, is the hidden battery state (e.g., SOC) at the k" time
step; ur means the input vector (e.g., current); wy_; is the
process noise; yj, is the output vector (e.g., terminal voltage);
vy, 1s the measurement noise of the output vector; f(+) is the state
transition function; and g(-) is the battery model that relates the
output vector with the input and hidden state vectors. With the
Coulomb counting as the SOC transition function, the q‘h order
RC model can be written as

{ x = T — NAT1/Cr + Wiy

2
yp = OCV (zx) + ik R+ 3, Ugk + vk

where nATi is the coulomb accumulation for given charg-
ing/discharging efficiency 7, current i; and time accumulation
AT, C, is the rated capacity of the battery; OCV (zy) is the
open circuit voltage (OCV) of the battery cell as a function of
the battery state (i.e., SOC); R is the battery charge/discharge
internal resistance; and U,y is the voltage of the g™ RC network
and expressed as

Ugre = exp (—=At/74) Uy -1 + Ry [1 — exp (—At/71,)] i

3
where R, and 7, are the resistance and time constant of the
g™ RC network, respectively. Parameter characterization of the
battery model can be conducted based on training data sets such
as hybrid pulse power characterization (HPPC) using either
the EKF or optimization methods based on the least square
estimation [26] or the particle swarm optimization [27]. The
nonlinear relationship between OCV and SOC should also be
identified through the battery characterization test.

III. FRAMEWORK AND METHODS FOR BIAS MODELING

Model bias is the inherent inadequacy of the model for repre-
senting the real physical systems due to the model assumptions
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Fig. 1.

and simplifications. All battery models, whether electrochemical
models, ECMs, or machining learning models, contain model
errors or biases. The difference is the degree of errors at different
battery operating conditions. Using the RC model in Eq. (2) as an
example, model bias can be viewed as the error of the predicted
terminal voltage compared to the true terminal voltage at any
battery operating conditions defined by the charge/discharge
current, SOC, temperature, maximum available capacity, etc.
Battery model uncertainty stands for the uncertainty of model
bias even at the same operating condition, which is mainly
attributed by some unknown parameters that could affect the
terminal voltage or some factors that cannot be fully described by
the defined model parameters. The objective of the bias modeling
is to accurately predict the model uncertainty (e.g., mean and
variance) at any battery operating conditions. It is worth noting
that bias modeling is different with model calibration, in which
model parameters are typically tuned to maximize the agreement
between the predicted and measured terminal voltage for spec-
ified operating conditions while ignoring the model form error.
Consequently, a calibrated model may have inaccurate model
prediction outside the calibration domain. Bias characterization
and modeling have been studied and the benefits have been well
demonstrated for general engineering design problems which are
usually static systems [28]-[32]. This paper essentially extends
the bias characterization and modeling to dynamic systems and
addresses associated challenges.

A. Overall Approach and Assumptions

The proposed framework is shown in Fig. 1, where the first
step is to choose a baseline battery model. The next step is to
calibrate unknown model parameters through the battery char-
acterization test such as the HPPC test. Depending on different
battery models, the number of unknown model parameters could
be different. Once the characterization test is completed, these
model parameters are fixed for the battery states (e.g., SOC)
estimation. In other words, prediction accuracy of the model
output, i.e., terminal voltage, of the baseline model may vary
under different battery operating conditions. The goal of the bias
modeling is to further characterize the bias and its uncertainty of
the baseline model under various battery operating conditions.
Hence, training data sets are required at the 3™ step to model
the bias and its uncertainty at different battery operating con-
ditions, where the bias function form could be arbitrary, e.g.,
either parametric or non-parametric, defined by current, SOC,
temperature, etc. The final step is to estimate the battery states
(e.g., SOC) at any operating conditions considering the model
uncertainty in addition to the baseline model.

Compared to majority of the publications for battery states
estimation, key difference of the proposed work lies in model
uncertainty characterization. Ideally, if model bias at any battery

Flowchart of the proposed framework for battery states estimation considering model uncertainty.

operating conditions could be truly determined, terminal voltage
predicted from the corrected battery model would be exactly
equal to the actual voltage measurement assuming no measure-
ment errors. Apparently, such accuracy improvement would sig-
nificantly improve the battery SOC estimation compared to only
using the baseline model with the same filtering algorithm such
as the EKF. In reality, accuracy of the bias modeling is dependent
on the amount of training data and the method employed for the
bias modeling. In addition, bias could exhibit uncertainty even
at the same operating condition if other unknown factors are
not considered in the bias model. For example, given a battery
with a 2A instant discharge current at 50% SOC level, bias of
the terminal voltage at the corresponding time step would not
be a deterministic value because the charge/discharge history
at previous time steps could also affect the bias. Therefore,
uncertainty should be introduced to accommodate the unknown
factors in the bias modeling, if necessary. If the RC circuit model
is employed as the baseline model, a revised cell dynamic model
considering model uncertainty can be formulated in Eq. (4),

{ r = xp—1 — NATi/Cr 4+ w1

Yp = OCV (xx) + iR+ 3, Uy +0k(0k-1, 1k, Tk, 7) + vk

“)

where 6 (0x_1, ix, Tx, 7) is the bias function at the k™ time

step; and ? indicates all other factors that could affect the bias,
e.g., temperature and aging effects of the battery.

While acknowledging that five types of uncertainty are all
important in real battery states estimation, this paper focuses
on bias modeling and thus simplifies other uncertainties in a
reasonable way as follows. First of all, sensor measurement
uncertainties are considered but with zero mean assumptions
for both voltage and current sensors. Secondly, algorithm un-
certainty is not considered and the EKF is employed for all case
studies. Thirdly, temperature uncertainty is not considered and
all experiments were conducted at constant room temperature
in this study. Thus, effectiveness of the bias learning will be
only demonstrated considering different loading (i.e., charg-
ing/discharging) profiles. Fourthly, model parameter uncertainty
due to the cell-to-cell variability is not considered. Thus, only
one battery cell with its unique parameter set will be used for the
demonstration. However, generalization of the bias modeling
considering model parameter uncertainty will be discussed in
future study in Section V. Finally, while acknowledging the un-
certainty of model bias , this paper focuses on the demonstration
of the great potential for considering model bias in the battery
SOC estimation. Hence, only the mean prediction of the bias
is employed for correcting the baseline model. Given a certain
amount of training data for bias characterization, it is expected
that the new model output y; (i.e., terminal voltage) in Eq. (4)
would be much more accurate than the baseline model output
yi, defined in Eq. (2) for various battery operating conditions.
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Consequently, SOC estimation would be more accurate as well.
In particular, two methods are proposed and compared for the
bias modeling and they are elaborated in subsections III.B and
I1.C.

B. Polynomial Regression Model for Bias Modeling

The polynomial regression model characterizes model bias
as a polynomial function of battery operation parameters (e.g.,
SOC and current). This method is simple and straightforward
for implementation. However, due to the high nonlinearity and
complexity nature of the bias with respect to various battery
operation conditions, this model would not be accurate for
specific battery operations at given time steps, but it should
be useful for modeling the overall trend of the bias in the
battery operation domain. A suitable polynomial regression
model should avoid potential overfitting issue while providing
reasonable accuracy at different battery operation conditions.
In this paper, a quadratic form of the bias model is adopted as
defined in Eq. (5).

Ok = ap + a10—1 + 204 + azix + asiy + aswy,
+ agxt + 705 1i) + agdp_ 1) + agipTy (5)

Model coefficients, i.e., ag—ag, will be determined from avail-
able bias training data by minimizing the root mean square error
(RMSE) between the predicted and true bias data.

C. Gaussian Process (GP) Regression Model for
Bias Modeling

In the GP regression method [33], voltage biases are assumed
to follow a multivariate Gaussian distribution such that the bias
at a specific battery operation condition (e.g., given discharge
current and SOC) follows a univariate Gaussian distribution.
The mean and covariance functions should be determined in
the GP regression model based on available bias training data.
Technically, a bias GP model can be written as

5(2) ~GP (m(z), k(z,2)) (6)

where z is a vector of battery operation parameters, e.g., z =
[0k—1, ik, x]; m(z) is the mean function which could be a
polynomial regression model defined in Eq. (5); k(z, 7 ) is the
covariance function which can take many forms. Among them,
the squared-exponential covariance function is commonly used
with the following form as

1(z—2)(z—2)"

k(z,2) = o3exp —3 B (7

where 03 and / represent the bias variance and the characteristic
length scale, respectively, and they must be larger than zero; 7’
is the dummy variable of z indicating the separate treatment of
battery operation parameters. If z and z happen to be at the same
location defined by battery operation parameters, the covariance
function reaches the maximum value 0(%; otherwise if zand 7 are
far away from each other, the covariance function approaches
zero indicating almost zero correlation among the two points.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

—
4 (
‘ 3.4
5 \
< ‘ \ 3.4
- (
g0 I ) |
5 |
o [ | 3.35
2 ‘
3.3
-4
-6 3.25
0 20 40 60 80 100 120
Time (Sec)

a Current and voltage profiles at 100% SOC
(a) ge p

34
33
32

31

ocVv (V)
w

27
268
25
0 10 20 3 40 50 60 70 80 90 100
SOC (%)
(b) OCV-SOC curve

Fig.2. Current and voltage profile for model parameter calibration and OCV-
SOC curve for Valence 26250 lithium-ion magnesium phosphate batteries.

Once the mean and the covariance function including the hyper-
parameters are determined based on the bias training data, the
GP regression model can be used to predict the bias at any new
battery operation conditions. Specifically, the mean of the bias
at a set of new operation conditions Z, is formulated as

5(2) =m(2.) + K (2..2) K(Z,2)"" [5(Z) — m (Z)]

()
where K(Z., Z) stands for n. x n matrix of the covariance
(i.e., Eq. (7)) calculated at all pairs of training and test points; n
and n., are the number of training and test points, respectively;
and K(Z, Z) is the n x n covariance matrix at all training points.
Compared to the polynomial regression model, the GP model is
more accurate for predicting the local nonlinearity of the bias,
which would further benefit the battery SOC estimation. The
parameters in the GP model are set by maximizing the marginal
likelihood [34] based on available bias training data. It is worth
noting that the mean function, i.e., m(z), is not always necessary
in the GP regression model. If a zero mean function was used,
then the prediction in Eq. (8) is revised as

8(2) =K (Z.,2)K(2,2)"'5(2) )

Inclusion of an assumed mean function could, to some ex-
tent, improve the prediction accuracy of the GP regression
model [34].
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Fig. 3. Battery parameter calibration based on the SPPC test and the 1% order RC model.

D. EKF for SOC Estimation Considering Model Bias

Given a prior SOC estimation at the (k—D)™ time step, the
expectation of the SOC at the k™ time step is calculated from
the state transition function f{*) as

k-1 = f (1, 1x) (10)

Based on the actual observation or evidence of the terminal
voltage at the k™ time step, the mean of the posterior SOC is
updated as

Tk = Trp—1 + Ki (v — vi) (11)

where y is the actual voltage measurement; yj, is the model
prediction considering the bias; and K, is the Kalman gain at
the k™ time step and is expressed in Eq. (12).

Ky, = Wy Hi V! (12)

where Wy ;. is the SOC variance at the k™ time step given
the process variance and the prior SOC variance at the (k—1)™
time step; V}, is the overall voltage variance at the k™ time step
considering the propagation of the SOC variance together with
the measurement variance at the k™ time step; and H & 1s the first
order derivative of the battery model with respect to the SOC
given xy ;. Considering the corrected battery model in Eq. (4),
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Fig. 4. Battery parameter calibration based on the SPPC test and the 2" order RC model.
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H is computed as

- Wk _ (dOCV(

, dR +Zquk

dxy, dxy, dxy,

doy; (e)

dxk

(13)

The first derivative term can be easily obtained from the
battery OCV-SOC characteristic curve. The second and third
terms can be calculated based on the parameter characteristic
curves with respect to the SOC. The last term can be simply
approximated using the finite difference method. It can also be
analytically derived based on either Eq. (5) from the polynomial
bias regression model or Eq. (8) from the GP regression model,
which is expressed as

dép (e)  dm (e) n dK (e,7)
dr,  dxg dxy,

K(2,2)7'8(2) —m(2)]
(14)
Depending on the specific polynomial form of the mean
function m(e), the first derivative term in Eq. (14) can be easily
obtained. The second derivative term is a 1 X n vector of the

covariance, in which each element is computed as
T — X
-5

-2 —2)" <
15)

2 12
Finally, the overall voltage variance V}, can be formulated in
Eq. (16) with the linear approximation of the battery model.

dk (zk, 2)
d—xk = U%efﬂp

Vi = H} Wiy + var(vy,) (16)

where var(vy) is the measurement variance; and Wijk—1 =
var(wg_1) + var(SOCj_,). In addition to the mean update of
the SOC at the k™ time step in Eq. (11), its variance should be
updated as well as shown in Eq. (17).

var (z1) = Wigr—1 — Ko Hi Wi

7)

IV. EXPERIMENTS AND RESULTS

The objective of this section is to demonstrate the effective-
ness of the proposed bias modeling method for battery SOC
estimation. Valence 26250 lithium-ion magnesium phosphate
batteries were employed in this study and all experiments were
conducted at the room temperature. The static capacity test was
conducted with 0.5C charge/discharge rates with 1-hour rest
period in between. Three cycles of such tests were conducted and
the average charge capacity was calculated as 2.5427 Ah. The
self-defined pulse power characterization (SPPC) test as shown
in Fig. 2a was conducted at every 5% change of the SOC and
was combined with the OCV-SOC characterization test because
they both need long rest periods.

The OCV was measured at every 5% change of the SOC with
0.5C discharge rate in between and a 2-hours resting period
and the results are shown in Fig. 2b. It is worth noting that the
OCV-SOC curve is fairly flat from 40%—-60% and 75%-95%
regions for this type of battery, which will make SOC estimation
challenging using the traditional approach. For battery model
bias training and validation, three cycle tests were conducted
including the urban dynamometer driving schedule (UDDS) test,
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Fig. 5. Battery current profiles and true SOC trajectories.

the New York city cycle (NYCC) test, and the mixture of the two
tests (i.e., UDDS followed by NYCC as a complete cycle). For
these tests, the cycle currents were scaled such that the maximum
current was 5C rate. The initial SOC was 90% and the cycles
were repeated till the SOC reached 20%.

A. Parameter Identification of the Baseline Model

Given total twenty SPPC current and voltage profiles at every
5% SOC level reducing from 100% to 5%, model parameters
of the 1*' order and 2" order RC model defined in Egs. (2)
and (3) were calibrated by minimizing the RMSE between the
measured and predicted voltage as shown in Fig. 3a and Fig. 4a,
respectively. Results of the voltage calibration error for the 1%
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order RC model are shown in Fig. 3b, where most errors are
bounded within +5 mV except at 5% SOC level where the
error could reach £15 mV. This indicates that the RC model
may have inherent inadequacy for representing the battery true
behaviors at the low SOC range. As such, an extended ECM
[24] may be needed if the objective is to estimate the battery
SOC in the low SOC range. In this case study, however, SOC
estimation is in the range from 20% to 90%. Hence, relatively
large voltage calibration error at 5% SOC level is not a concern
for demonstration of the proposed research. By employing the
24 grder RC model, the voltage calibration error can be further
reduced to about £2 mV as shown in Fig. 4b except at 5%

SOC level. It is worth noting that such calibration error could
be further reduced if employing more RC pairs. However, it
would be more likely to create an overfitting issue under real
battery operating conditions. As such, only 1% and 2" order RC
models are employed in the case study. Results of the parameter
calibration for the 1% and 2™ order RC model are shown in
Fig. 3¢-3f and Fig. 4c—4h, respectively.

B. SOC Estimation With an Assumed True Model

The goal of this section is to provide reference SOC estimation
results using the EKF for three battery charging/discharging
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Terminal voltage prediction and the voltage bias of the 1% order RC

8621

Voltage Bias (V)
o

-0.05 —
0.1
01
15 ¥
10 S 0
0 o = -0.05
Current (&) 0 5 -0 Previous Bias (V)

(a) Bias as a function of previous bias and current at 50% SOC level

<10
5

0.

5.

Voltage Bias (V)

-10
100

80

40 . . ) ‘ 10
20 ~ 0
SOC (%) e -10

0 .15 Current (A)

(b)  Bias as a function of current and SOC if pervious bias is fixed at 0

Fig. 8. Bias approximation using the polynomial regression model showing
in a 3D space by fixing the 3 input variable.

Voltage Bias (V)

-0.02

o . ) ) s ~ 7 0.05
Current (A) 15 .04 - Previous Bias (V)

(a) Bias as a function of previous bias and current at 50% SOC level

0.04
0.02 |

20,02 | —

Voltage Bias (V)

-0.04 L
100

80

40

20
SOC (%) o

-10
15 Current (A)

(b)  Bias as a function of current and SOC if pervious bias is fixed at 0

(middle is the mean prediction with 95% confidence levels)

Fig. 9. Bias approximation using the GP regression model showing in a 3D
space by fixing the 3™ input variable.

Authorized licensed use limited to: San Diego State University. Downloaded on February 19,2020 at 17:53:22 UTC from IEEE Xplore. Restrictions apply.



8622

345
34
335 ||

33

s 3.25
& 32

3
>3.15
31
305
3

295

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (Sec.)

(a)  Voltage comparison between actual measurement and prediction
from the 1% order RC model
10 . . . . . . ) ) 008
0.04
st } |
(ITH18 2
| | | 0.02
g0 1 ) u | ‘ ' i ‘ %
E | | ' | ‘ 0 E?,
8l ‘ i ‘ ' g
| ! 0.02 >
|
Y ‘ 0.04
-15 0.06
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Sec.)
(b)  Current and bias profiles with bias RMSE of 0.013 V
345
34|
3.3 HJ{| (1A Al ] el bl
(LA o
33 | | ;l‘ i 4y | A.," !lil
f | H S|
saas |l (FLAFTE g ‘3!” W lf
b [ 1)) |
§3415 | ‘ ‘ I'l
a1
305
3 Test
15t order model + bias correction w/ regression
20 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Sec.)
(c) Voltage comparison between actual measurement and prediction

from the corrected model using the polynomial regression

Fig. 10.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

0.06

Voltage Bias (V)

Baseline model
After bias correction w/ regression
-0.06 i
0 1000 2000 3000 4000 5000 6000
Time (Sec.)

7000 8000 9000

(d)  Voltage bias comparison before (RMSE = 0.013 V) and after the bias
correction (RMSE = 0.009 V)
345
34 ’
T \
3.3] A b' ’ii“ln : { i"ll ||i ‘ I\’“’. ‘t ‘
S iR ‘ ] ": ‘ﬁ» ‘
§ a2 ‘ ' ‘ iy ‘, ' 4
>315/ N | ‘
31} ‘
3.05
3 Test
1st order model + bias correction w/ GP regression
295, io00 2000 3000 4000 5000 6000 7000 8000 9000
Time (Sec.)
(e)  Voltage comparison between actual measurement and prediction
from the corrected model using the GP regression
0.06 :
s
3 *
[++]
-3
i}
2
-0.04 |
Baseline model
After bias correction w/ GP regression
-0.06 1 - :

0 1000 2000 3000 4000 5000 6000
Time (Sec.)

(f)  Voltage bias comparison before (RMSE = 0.013 V) and after the bias

correction (RMSE = 0.008 V)

7000 8000 9000

Voltage comparison between model prediction and actual measurement under the mixed loading profile: (a) and (b) consider only the baseline model,

(c) and (d) consider the corrected model using the polynomial regression, and (e) and f) consider the corrected model using the GP regression

profiles. In particular, the terminal voltage predicted from the
2" order RC model was treated as actual voltage measurement
such that there would be no model bias at all during the SOC
estimation. The purpose is to firstly eliminate the influence of
model bias in the SOC estimation and then examine the EKF
performance under given parameter setting. The experiments
were set up to discharge the battery from 90% SOC to 20%
SOC and Fig. 5 shows three current profiles and corresponding
SOC trajectories.

Without model bias, the only error source would be the
EKF linearization error during the estimation. In addition,

the parameter setting in EKF including the process noise and
measurement noise would influence the convergence rate. In
this and following case studies, process noise was ignored
by assigning an extremely small value (le-8), and voltage
measurement error was assumed to follow a Normal distribu-
tion with zero mean and 1 mV standard deviation. An initial
guess of SOC was assigned as 80%, and the estimation per-
formance is shown in Fig. 6 for all three current profiles. The
results are as expected if model contains no bias at all, even
though the OCV-SOC curve could be fairly flat as shown in
Fig. 2b.
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profiles.

C. Bias Modeling and Approximation With the 1°' Order
RC Model

Even though accurate voltage prediction is observed under
SPPC test with characterized model parameters, battery model
prediction under various operating conditions could be inaccu-
rate or exhibit different degree of voltage biases. The reason
is because there is no one battery model (e.g., 1** order and
2" order ECM) that can be applied to any battery operating
conditions without any bias. As such, learning of model bias
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Comparison of SOC estimation accuracy for the 1% order RC model and the corrected model with two bias modeling approaches for three battery loading

would increase the prediction accuracy of the baseline model
under different operating conditions. It is worth noting that the
bias model could have different dynamic model structure as
the baseline model, hence, it would greatly increase the model
prediction capability which is beyond simply conducting model
parameter calibration.

This section conducts bias modeling and approximation using
the polynomial regression model and the GP regression model.
For demonstration purpose, bias training data were first obtained
from two current loading profiles (e.g., UDDS and NYCC) based
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on the 1%t order RC model, then bias models were constructed us-
ing both methods. Fig. 7 shows the voltage comparison between
actual measurement and the model prediction from the 1% order
RC model under UDDS and NYCC loading profiles. Overall,
the model presents reasonable accuracy as shown in Fig. 7a and
7c. By plotting the bias vs. current profiles as shown in Fig. 7b
and 7d, several facts can be observed. First of all, bias could
be as low as zero or as high as about 50 mV (very rare) under
UDDS profile, which is apparently current dependent. Under
NYCC profile, bias is within 20 mV range for most of the time,
but could increase to about —50 mV at the end of the profile.
Secondly, since these current profiles are repeatedly applied to
the battery and the bias does not show repeated pattern, the
bias should also be dependent on the battery SOC level. Thirdly,
biases are time series data and the value at current time step could
be dependent on the value at previous time steps. Quantitatively,
the bias RMSE is 14 mV and 18 mV for UDDS and NYCC,
respectively.

Based on the bias training data and the model proposed in
Eq. (5) for polynomial regression model and Eq. (8) or Eq. (9)
for GP regression model, visualization of the bias approximation
ina 3D space is shown in Fig. 8 and Fig. 9 for two different meth-
ods. In particular, the optimal fit for the polynomial regression
model is shown in Eq. (18).

O =

—0.0066 + 0.97115,_1 + 2.184157_, — 0.00024),

+ (1.95¢ — 5)iz +0.0001z; — (1.42¢ — 6)a3,

+ 0.00550), 14, — 0.00136),_ 1), + (1.086 — 6)’ik$k
(18)

For GP regression model, not only the mean prediction
but also 95% confidence intervals are shown in Fig. 9. Com-
pared to the polynomial regression model, the GP regression
model captures not only the overall bias trend but also some
local nonlinearity. In addition, confidence-based bias predic-
tion could be conducted, if necessary, such that bias can be
intentionally overestimated to a given confidence level. In
this case study, however, only the mean prediction would be
employed.

With the bias modeling using the polynomial and GP regres-
sion models, the corrected battery model shown in Eq. (4) can
be obtained for any new battery operating conditions. Although
such a statement is generally true, accuracy of the bias model
depends upon the amount of training data. As a demonstration,
terminal voltage prediction under the third loading profile, i.e.,
the mixed current profile, was calculated for the baseline model,
the corrected model based on the polynomial regression, and
the corrected model based on the GP regression. Fig. 10 shows
detailed results and three important findings are observed. First
of all, there are significant error reductions in terms of the RMSE
for voltage estimation if model bias is included in the baseline
model. Specifically, RMSE percentage reductions are 30.7% and
38.5% for the polynomial and GP regression model, respectively.
Secondly, compared to the baseline model prediction, majority
of voltage biases from the corrected model are distributed around
zero as shown in Fig. 10d and 10f such that the corrected model
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loading profiles.

could be overall considered as an unbiased model. Thirdly, there
are some relatively large biases, e.g., up to 40 mV as shown
in Fig. 10b, in the baseline model when the battery is subject
to continuously large discharge current. The reduction of these
biases in the corrected model is not significant using the poly-
nomial model. The main reason is because these biases are not
representative in the training data sets and the polynomial model
simply minimizes the least square error from all data points. In
the GP regression model, however, the model can better capture
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Comparison of SOC estimation accuracy for the 2" order RC model and the corrected model with two bias modeling approaches for three battery

such local nonlinearity if the data points are believed to be true
value, i.e., not subject to any noise.

D. SOC Estimation Considering Model Bias With the I*'
Order RC Model

To demonstrate the effectiveness of the bias modeling for
SOC estimation, EKF was applied to three loading profiles (i.e.,
UDDS, NYCC, and the mixture of UDDS and NYCC) with the
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initial guess of the SOC as 70%. The true or reference SOC
trajectory was calculated using the direct Coulomb counting
knowing the true initial SOC as 90%. SOC estimations using the
baseline model, i.e., the 1% order RC model, and the corrected
model with two methods for bias modeling were compared to the
true SOC till it degrades to 20%. In particular, cross validation
was used in bias training and modeling such that the test profile
is excluded from the training profile.

Fig. 11 shows the SOC comparison results for three current
loading profiles, in which large estimation errors are observed
for the baseline model. This is mainly due to the combination
effect of the inherent bias of the baseline model and the flatness
of the OCV-SOC curve. For the mixed loading profile as shown
in Fig. 10b, the baseline model tends to slightly overestimate
the terminal voltage in most of the time and underestimate the
terminal voltage when there is a set of continuous large discharge
currents. As such, even though the estimated SOC is continu-
ously lower than the true SOC as shown in Fig. 11a, the predicted
voltage due to the overestimation could perfectly match the mea-
sured voltage at higher SOC level. Consequently, the baseline
model has relatively large SOC estimation error as shown in
Fig. 11b. With the bias modeling of the baseline model using
the polynomial and GP regression methods, terminal voltage
estimation errors can be greatly reduced as shown in Fig. 10d and
10f. Consequently, both methods significantly improve the SOC
estimation accuracy as shown in Fig. 11b. Furthermore, there is
some degree of bias overcorrection for the polynomial regression
model. As such, the estimated SOC is higher than the true SOC.
The bias correction using the GP regression model performs
consistently better than the polynomial regression model in this
case study.

Similar observations can be made for the other two loading
profiles as shown in Fig. 11c—11f. It is worth noting that SOC
errors increase in Fig. 11f after about 18,000 seconds using the
GP regression model. This is mainly because the baseline model
increasingly overestimates the voltage for the NYCC profile
after about 18,000 seconds as shown in Fig. 7d, and the bias
model cannot capture such behaviors based on the training data
sets from UDDS and the mixed profile. The bias correction
using the polynomial regression, on the other hand, shows better
performance in this region mainly because of the cancellation
effect of previously overestimated SOC.

E. SOC Estimation Considering Model Bias With the 2"
Order RC model

This section repeats above work but changes the baseline
model to the 2™ order RC model for two purposes. The first
goal is to further demonstrate the effectiveness of the proposed
work and the second goal is to obtain some insightful findings
through the comparison of the performance difference.

With parameter characterization of the 2"¢ order RC model
as shown in Fig. 4, bias of the baseline model can be again
identified from the training data sets. Fig. 12 shows the voltage
bias of the 2" order RC model under UDDS and NYCC loading
profiles. By comparing the results in Fig. 7 for the 1 order RC
model, the 2" order RC model shows much worse accuracy for
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the UDDS profile, but slightly better performance for the NYCC
profile based on the bias RMSE. Even though a higher order RC
model can fit the SPCC test profile better, it also has the risk of
overfitting the data such that the accuracy becomes worse when
applying the model to other loading profiles. In this case study,
the bias RMSE is 27 mV for UDDS profile in the 2" order RC
model as compared to 14 mV in the 1% order RC model; and the
bias RMSE is 13 mV for NYCC profile as compared to 18 mV
using the 1*' order RC model. As a briefly summary, a higher
order RC model does not necessarily mean better accuracy. It
is hence important to identify the most suitable battery model
based on representative battery operating profiles. This study,
however, does not focus on the identification of the most suitable
baseline model but on the demonstration of the bias learning.

For simplicity, detailed results of bias modeling are not shown
for the 2" order RC model and the final results for the SOC
estimations are shown in Fig. 13. Some observations are sum-
marized as follows. First of all, SOC estimation using the ond
order RC model performs worse for the mixed loading profile
and the UDDS profile due to the overfitting issue, but performs
better for the NYCC profile, as compared to the 1% order RC
model. Secondly, the corrected model considering the model
bias generally performs better than the baseline model, but the
effect would be influenced by the baseline model. Basically,
if there is an overfitting issue in the baseline model, the bias
would be highly nonlinear, which makes bias modeling difficult
for achieving the same accuracy. Thirdly, bias modeling using
the GP regression generally performs better than the polyno-
mial regression. GP regression is generally considered as a
non-parametric model and its prediction is more data-driven
compared to the polynomial regression.

V. CONCLUSION AND FUTURE WORK

This paper proposes model bias characterization for typical
circuit-based lithium-ion battery models so that the baseline
model accuracy can be significantly improved while maintaining
similar computational efficiency. Under the same setting for bat-
tery SOC estimation, the corrected model incorporating the bias
modeling consistently produces more accurate estimations than
the baseline model. The GP regression model generally performs
much better than the polynomial regression model. In addition to
the previous bias history, current and SOC are two main factors
used for the bias modeling in this paper. Even though the mean
of the bias was actually used for the baseline model correction,
noticeable uncertainties were observed from the training data,
which indicates that other unknown factors should contribute
to the bias as well. To further improve the confidence of the
SOC estimation in particular applications, it may be necessary
to include the uncertainty of the bias in the SOC estimation.
To further enhance the expected SOC estimation accuracy, it is
worthwhile to include more factors in the bias modeling.

For bias modeling considering temperature and degradation of
the cell, the bias function in Eq. (4) can be extended by adding
these two related parameters. As compared to the case study,
there is no essential difference in terms of the bias learning
process, but proper training data sets should be collected at
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different temperature and degradation levels. In addition, adding
two more input variables with large amount of training data
sets could pose accuracy and efficiency challenges for various
machine learning methods including the GP regression model.

It should also be noted that the demonstration in Section IV
is for one single battery cell which has its unique parameters
after the SPPC test. In reality, different cells will exhibit pa-
rameter uncertainty due to the manufacturing tolerance. Hence,
the bias learning should consider such cell-to-cell variability
as well. It is almost impossible to track each cell’s unique
parameter set in real application. However, it is possible to
conduct uncertainty modeling for battery model parameters such
that each parameter may follow a certain distribution instead of
a deterministic value over the SOC range. As such, any cell
parameter realization can be treated as one random realization
from the population distribution. Therefore, the deterministic
parameter characterization such as the one shown in Fig. 3
and Fig. 4 would be replaced by probabilistic parameter rep-
resentations. Then, the next step is to conduct bias modeling
considering such parameter uncertainty. By picking one battery
cell from the population and follow the proposed procedure in
Section IV, bias of that cell can be identified such as the one
shown in Fig. 8 and Fig. 9. If such process can be repeated for
several cells, different bias realizations could be observed under
different parameter settings observed from different cells. Then,
the technical challenge is to construct such a model to build
the relationship between model parameters and the model bias.
Once this model is constructed, simulation can be conducted to
accurately quantify the model uncertainty, i.e., uncertainty of
the model bias, subject to the parameter uncertainty. In addition
to the modeling technique for model uncertainty and parameter
uncertainty characterization, data sufficiency issue, i.e., the num-
ber of cells used for uncertainty modeling, should be considered
as well.
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