Interoperability study of fast wireless charging and normal wireless charging of electric vehicles with a shared receiver

Yiming Zhang\(^1\), Zhengchao Yan\(^1,2\), Tianze Kan\(^1\), Chris Mi\(^\ast\)\(^3\)

\(^1\)Department of Electrical and Computer Engineering, San Diego State University, 5500 Campanile Drive E426A, San Diego, USA

\(^2\)School of Marine Science and Technology, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, People’s Republic of China

\(^\ast\)E-mail: mi@ieee.org

Abstract: Fast charging of electric vehicles (EVs) has been the trend recently. For conductive charging, normal charging can be realised by an on-board charger, while fast charging can be realised by a DC charger which is usually off-board the vehicle. However, for wireless charging, there is a need of a transmitter on the ground and a receiver on the EV side. Therefore, there will be a high-power receiver and a low-power receiver in one EV to achieve dual charging capabilities. To reduce the EV-side cost, weight, and volume, this paper proposes a wireless charging system with a shared receiver compatible of fast wireless charging (FWC) at a small air gap and normal wireless charging (NWC) at a large air gap. The relationship between the coil size and the power level is investigated and a suitable receiver coil size is selected for FWC. The LCC-LCC topology is selected due to its characteristic of output power proportional to the coupling coefficient. Design procedures of the receiver and transmitters are investigated. The simulations and the experimental results obtained from the downscaled prototype verified the effectiveness of the compatibility design.

1 Introduction

Wireless power transfer (WPT) \([1–4]\) is an emerging technology that has achieved a great advancement in academia and a deep penetration into the commercial market. Electric vehicle (EV) wireless charging is a typical application of the WPT technology \([5, 6]\). Compared with conductive charging, wireless charging has the advantages of convenience (free from manual operation) \([7]\), safety (free from electric shock and sparks), reliability (free from water and dust), and applicability in harsh environments \([8, 9]\). However, cost, size, charging time, and efficiency are the barriers that affect the application of EV wireless charging.

The charging time is one of the major concerns of EV charging. Take Tesla Model S as an example. The battery capacity in the standard edition is 75 kWh. To fully charge Tesla Model S from 15% state of charge, it takes over 9 h for a 7 kW charger; while only 32 min are spent for a fast charger rated at 120 kW. Thus, fast charging is one of the future trends that shorten the charging time for EVs. Tesla has developed a supercharger capable of 120 kW conductive charging \([10]\). For wireless charging, there is a need of a transmitter on the ground and a receiver on the EV side. Fast wireless charging (FWC) is needed for an EV to shorten the charging time, which normally occurs in the charging station, where high-power charging facilities are available. Normal wireless charging (NWC) is also required for an EV, which mainly takes places in the residential or public garages, where only low-power charging facilities are available. Therefore, to enable the EV for FWC and NWC, there will be two sets of receivers, resulting in high cost, bulky size, and heavy weight on the EV side. To address these issues, power interoperability of NWC and FWC should be studied.

For purposes of compatibility, the receiver in a WPT system should be interoperable with different transmitters, and vice versa. Current literature in this area focuses on (i) battery voltage compatibility \([11]\), where battery packs with the voltage ranging from 250 to 700 V could be wirelessly charged by inserting either a buck or a boost converter; (ii) coil compatibility \([12–14]\), where different coil shapes, such as circular coil, bipolar coil, and DD coil, were compared and tested; (iii) power compatibility, where the transmitter was designed for receivers with different power levels \([15, 16]\); (iv) frequency compatibility, where dual-frequency operation was studied for low-power applications \([17, 18]\). However, there is a lack in designing a receiver capable of both FWC and NWC. To achieve dual power capability of FWC and NWC using a shared receiver with reduced EV-side cost, weight, and volume, the shared receiver and the respective transmitters should be carefully designed. FWC and NWC have different charging scenarios. Usually the charging distance of FWC shall be designed to be very small so that the power density can be improved and the coil size and system cost can be reduced. A mechanical positioning device can be employed to accurately adjust the charging position. Thus, there are no misalignment issues for FWC. In comparison, the charging distance of NWC is usually large, approximately 100–200 mm. If no mechanical device is utilised, there will be a misalignment issue. The maximum misalignment is set to 75 mm in the front-to-rear direction and 100 mm in the door-to-door direction according to the recommended practice J2954 from the Society of Automotive Engineers. The typical design requirements for the two charging scenarios are summarised in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWC (J2954)</th>
<th>NWC (J2954)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging location</td>
<td>Charging Station</td>
<td>Residential Garage</td>
</tr>
<tr>
<td>Output power</td>
<td>120 kW</td>
<td>7 kW</td>
</tr>
<tr>
<td>Charging distance</td>
<td>35 mm</td>
<td>150 mm</td>
</tr>
<tr>
<td>Misalignment issue</td>
<td>No</td>
<td>Max (75 mm, 100 mm)</td>
</tr>
<tr>
<td>Operating frequency</td>
<td><85 kHz</td>
<td>85 kHz</td>
</tr>
<tr>
<td>Inverter DC voltage</td>
<td><800 V</td>
<td><650 V</td>
</tr>
<tr>
<td>Rated battery voltage</td>
<td>320 V</td>
<td>320 V</td>
</tr>
</tbody>
</table>

2 Coil size and power level

To design a receiver compatible of 120 and 7 kW transmitters, the receiver coil size should be first determined. This section
For an inductive WPT system, the active transferred power of two coupled coils is maximised when the phase difference between the coil currents is 90° [19]. Under this condition, the output power can be determined by the ampere-turn of the coils, which is calculated as

$$P_{\text{out}} = \omega k_{12} n L_{10} L_{20} I_1 I_2 \left(n_1 I_1 n_2 I_2 \right).$$

where ω is the operating angular frequency, L_1 (L_2), L_{10} (L_{20}), n_1 (n_2), and $n_1 I_1$ ($n_2 I_2$) are the current root-mean-square (RMS) value, the self-inductance, the single-turn self-inductance, the turn number, and the ampere-turn of the transmitter (receiver). k_{12} is the coupling coefficient. The single-turn inductance has the same coil dimension as the original coil, such as outer length (OL) and inner length (IL), but with only one turn, as shown in Fig. 1. Once the single-turn inductances L_{10} and L_{20} are obtained from the simulation, the actual inductances can be calculated by

$$L_1 = L_{10} \times n_1^2 \quad \text{and} \quad L_2 = L_{20} \times n_2^2.$$

When the coil dimensions are determined, the maximum output power can be determined by the ampere-turn of the coils, which is maximised when the coil is tightly wound and can be calculated by its dimension and the withstanding current density. The cross-section of a tightly wound coil is shown in Fig. 2, where the coil layer is 1, the coil width is w, and the diameter of the litz wire is d_w. The area of the cross-section can be expressed by $S = w \times d_w$. Assume the litz wire has N_{ST} strands with a strand radius of r_s, and the utilisation ratio of the copper in the cross-section η_c can be calculated as

$$\eta_c = k_{UR} N_{ST} \frac{\pi r_s^2}{d_w^2}.$$

where k_{UR} is the coefficient that takes into consideration the fact that the wires cannot be tightly wound in reality. When the current density flowing through the copper is J, the maximum ampere-turn of a coil can be expressed as

$$(nI)_{\text{max}} = \eta_c J.$$

For coils with ferrites, k_{12}, L_{10}, and L_{20} in (1) can be obtained through finite element simulation. Hence, the theoretical maximum power level of coupled identical coils can be obtained by

$$P_{\text{in}} = \max = k_{12} n_0 \sqrt{\frac{L_{ST} L_{ST}}{2}} (\eta_c J)^2.$$

2.2 Impact of IL

In J2954, the receiving coil size for the standard 7.7 kW charging was recommended to be 300 mm. Therefore, in this study, we start with the size of 300 mm × 300 mm × 4 mm to study the impact of the coil size. Two charging distances are selected: 35 and 150 mm.

The simulated single-turn self-inductance (L_0) and k_{12} varying with IL are plotted in Fig. 3a. L_0 increases with the increasing IL, and this can be explained by the fact that the coil mean length increases with the increasing IL. k_{12} decreases with the increasing IL, and when IL is smaller than one-third of OL, k_{12} will saturate.

To calculate the maximum output power, the operating frequency is set to 85 kHz as recommended by J2954 and J is assumed to be 3 A/mm². An 800-strand litz wire with a strand radius of 0.05 mm is suitable for this frequency. η_c is calculated to be 0.3. The calculated maximum ampere-turn and output power are shown in Fig. 3b. Both the ampere-turn and the output power decrease with the increasing IL. The maximum ampere-turn has nothing to do with the coupling coefficient and it is only determined by the coil geometry and current density, as shown in (3). Given the coupling coefficient and the maximum output power, IL is selected to be one-third of OL.

2.3 Impact of OL

Under the aforementioned conditions and IL is set to one-third of OL, the simulated L_0, k_{12}, n_0, and P_{out} varying with OL are depicted in Fig. 4. Only when OL exceeds 450 mm, 120 kW output can be achieved.

The selection of J affects the maximum power level. When $J > 3$ A/mm², a higher maximum output power can be achieved, but the cooling of the litz wires should be taken into consideration. Another factor that impacts the selection of the ampere-turn is the saturation of ferrite, which can be avoided by increasing the ferrite thickness.

3 Full-Scaled system design

3.1 Topology selection

The series-series (SS) and LCC-LCC topologies are two popular topologies in a WPT system due to the constant-current output.
characteristic. They are compared to find a better solution to satisfy the design requirements. The equivalent circuits of the SS and LCC-LCC topologies are shown in Fig. 5, where \(U_1 \) (\(U_2 \)) is the inverter (rectifier) AC voltage, \(L_1 \) (\(L_2 \)), \(C_1 \) (\(C_2 \)), and \(f_1 \) (\(f_2 \)) are the main coil inductance, the auxiliary coil inductance, the series compensation capacitance, and the parallel compensation capacitance of the transmitter (receiver), respectively.

For the SS topology, the resonant frequency is

\[\omega = \frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}}. \] (5)

In this condition, the output power of the SS topology can be expressed by

\[P_{\text{out}} = \frac{U_1 U_2}{\alpha M_{12}} = \frac{1}{k_{12}} \frac{U_1 U_2}{\sqrt{L_1 L_2}}. \] (6)

For the LCC-LCC topology, the resonant frequency is

\[\omega = \frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}} = \frac{1}{\sqrt{L_1 C_1 + C_{12}}}, \] (7)

\[= \frac{1}{\sqrt{L_2 C_2 + C_{12}}}. \]

In this condition, the output power of the LCC-LCC topology can be expressed by

\[P_{\text{out}} = \frac{\alpha M_{12} U_1 U_2}{\alpha L_1 \alpha L_2} = \frac{k_{12}}{\alpha_1 \alpha_2} \frac{U_1 U_2}{\sqrt{L_1 L_2}}. \] (8)

where \(\alpha_1 \) and \(\alpha_2 \) are defined as

\[\alpha_1 = \frac{L_1}{L_2}, \quad \alpha_2 = \frac{L_2}{L_2}. \] (9)

Comparing (6) with (8), we can see that the output power of the SS topology increases with the decreasing \(k_{12} \), while that of the LCC-LCC topology increases with the increasing \(k_{12} \). In the application scenario, \(k_{12} \) of FWC is much larger than that of NWC. The characteristic of the LCC-LCC topology facilitates the design of a receiver compatible of two distinctly different power levels. Moreover, there are two extra degrees of freedom, namely \(\alpha_1 \) and \(\alpha_2 \), to help the design of such a WPT system. Therefore, the LCC-LCC topology is selected.

3.2 Coil design

In the two charging scenarios, there is only one receiver, but the receiver is at two different charging distances. Thus, the self- and mutual inductances vary but the capacitances keep the same. Therefore, there are two sets of parameters for one receiver. The equivalent circuits of the two charging scenarios are shown in Fig. 6, where \(L_{21} \) (\(L_{22} \)) and \(L_{21} \) (\(L_{22} \)) are the receiver main coil and auxiliary coil inductances of FWC (NWC). \(M_{121} \) and \(M_{222} \) are the mutual inductances. The single-turn inductances are denoted by adding 0 in the subscript (\(L_{210} \), \(L_{220} \), \(L_{210} \), and \(L_{220} \)).

One of the problems with the shared receiver using the LCC-LCC topology is that \(L_{21} \) differs greatly from \(L_{22} \) at the two charging distances of 35 and 150 mm, but \(C_2 \) and \(C_2 \) remain the same. If \(L_{21} \) and \(L_{22} \) are the same, the receiver will not work in resonance for both scenarios. That means if the parameters are tuned for one charging scenario, the parameters for the other will be detuned due to the variation of the main coil inductance. The solution to this issue is to integrate the auxiliary coil with the main coil and carefully design the coils so that the receiver works in resonance for both case, i.e.

\[f_{\text{FWC}} = \frac{1}{\sqrt{L_{212} C_{12}}} = \frac{1}{\sqrt{L_{21} C_{12}}}, \] (10)

\[f_{\text{NWC}} = \frac{1}{\sqrt{L_{212} C_{12}}} = \frac{1}{\sqrt{L_{22} C_{12}}}, \]

which can be transformed into

\[\frac{L_{210}}{L_{220}} = \frac{L_{210}}{L_{220}}. \] (11)

We can see from (11) that the main coil inductance and the auxiliary coil inductance of the receiver should have the same
Fig. 7 Coil geometry and dimension
(a) Shared receiver, (b) FWC transmitter, (c) NWC transmitter

For FWC, the coils are designed to be symmetrical. The main coils are unipolar coils and the auxiliary coils are bipolar coils which are perpendicular to each other, as depicted in Fig. 7. Thus, there is no coupling between \(L_1 \) and \(L_2b \), or between \(L_1 \) and \(L_1 \) and \(L_2 \).

The size of the main coils is selected according to the maximum power level estimation of Section 2. The coil dimensions are given in Fig. 7. By changing the dimensions of the auxiliary coils of FWC, \(L_210 \) and \(L_220 \), can be adjusted to achieve (11). Since the receiver auxiliary coil is a bipolar coil, there are many parameters that can be changed to satisfy (11), such as the coil outer length, outer width, inner length, and inner width. One design instance is shown below. When the length of the bipolar coil is set to 500 mm and the coil width is 80 mm, the simulated single-turn self-inductances varying with the width of the bipolar coil are shown in Fig. 8. When the width of the bipolar coil is 500 mm, \(L_{210} / L_{220} = L_{210} / L_{220} \). Therefore, the width of the bipolar coil is chosen to be 500 mm. The simulation results are listed in Table 2.

We can see from Table 2 that there is no major difference in the parameters between the perfect alignment and misalignment of NWC except for the coupling coefficient. The output power of the LCC–LCC topology increases with the increasing coupling coefficient. Therefore, for a given range of the inverter DC voltage, the parameters should be designed so that the output power of NWC at the maximum misalignment reaches the rated value, while for the perfect alignment case, the inverter DC voltage can be regulated for the rated output.

Table 2 Simulated single-turn self-inductances and coupling coefficients

<table>
<thead>
<tr>
<th></th>
<th>FWC ((\mu H)) (0 mm, 0 mm)</th>
<th>NWC ((\mu H)) (0 mm, 0 mm)</th>
<th>NWC ((\mu H)) (75 mm, 100 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{110})</td>
<td>2.574</td>
<td>0.518</td>
<td>0.519</td>
</tr>
<tr>
<td>(L_{10})</td>
<td>0.966</td>
<td>0.407</td>
<td>0.407</td>
</tr>
<tr>
<td>(L_{210})</td>
<td>2.575</td>
<td>1.655</td>
<td>1.627</td>
</tr>
<tr>
<td>(L_{210})</td>
<td>0.965</td>
<td>0.619</td>
<td>0.628</td>
</tr>
<tr>
<td>(k_{121})</td>
<td>0.810</td>
<td>0.192</td>
<td>0.127</td>
</tr>
</tbody>
</table>

The output power of FWC and NWC with the maximum misalignment can be expressed, based on (8), as

\[
P_{\text{out-FWC}} = \frac{k_{121}}{a_p a_n U_1 U_2} \frac{U_{\text{inv1}}}{L_{110} L_{210}} \quad (13)
\]

\[
P_{\text{out-NWC}} = \frac{k_{122}}{a_p a_n U_1 U_2} \frac{U_{\text{inv1}}}{L_{120} L_{220}} \quad (14)
\]

where \(n_1 \), \(n_2 \), and \(n_3 \) are the turn numbers of \(L_1 \), \(L_{21} \) (\(L_{22} \)) and \(L_3 \), respectively.

When the operating frequency of NWC is 85 kHz, the operating frequency of FWC can be calculated, according to (12), as 68.1 kHz. For the two charging scenarios, \(a_2 \), \(a_3 \), and \(a_2 \) are the same, but \(k_{121} < k_{222} \), \(L_{110} / L_{210} = L_{120} / L_{220} \), and \(L_{210} / L_{220} \) are all determined by the coil geometry. Thus, only \(a_1, a_1, a_3, a_1, a_1, a_3, U_1 \) and \(U_3 \) can be adjusted for the two power levels. By substituting the parameters into (13) and (14), the relationship between the designed parameters of the transmitters can be expressed as

\[
a_p a_n U_1 \frac{U_{\text{inv1}}}{U_{\text{inv3}}} = \frac{P_{\text{out-FWC}} k_{121}}{P_{\text{out-NWC}} k_{122}} \frac{f_{\text{FWC}}}{f_{\text{NWC}}} \approx 4.14. \quad (15)
\]

There are multiple combinations of the parameters \(a_1, a_1, a_3, a_1, a_1, a_3, U_1 \) and \(U_3 \) that can achieve the requirement of (15). One suitable solution is listed in Table 3.

The system design procedure is summarised in Fig. 9.

3.3 Simulation

To validate the proposed solution in Table 3, the FWC and NWC systems are modelled in MATLAB/Simulink. The simulation results are listed in Table 4. The DC–DC efficiencies of these two charging systems are both over 94%. Thus, the design requirements have been satisfied to use the same receiver for two distinctively different power levels.

The simulation waveforms are shown in Fig. 10.
4 Downscaled system validation

Due to the power limitation in the lab, the 120 kW FWC system cannot be realised. Instead, a downscaled prototype of 6.4 and 1.0 kW is implemented. The charging distance of the 6.4 kW system is 15 mm and that of the 1.0 kW system is 142 mm so that approximately the same coupling coefficients as the full-scaled systems are achieved. Following the same procedures in Section II, the coils can be designed. The ferrite size is 448 mm × 354 mm × 8 mm, and the coil dimensions are labelled in Fig. 11. The photograph of the experimental setup is depicted in Fig. 12. The simulated and measured inductances are compared in Table 5. The largest misalignment is set to (75, 100 mm).

We can see from Table 5 that \(\frac{85.9}{59.0} \approx \frac{288.2}{195.4} \). Therefore, the receiver can stay in resonance at both charging distances. The resonant frequency of the 1.0 kW system is set to be 85 kHz. Thus, the resonant frequency of the 6.4 kW is calculated to be \(85 \times \sqrt{195.4/288} \approx 70 \text{ kHz} \). \(C_1 = C_2 = 24.85 \text{ nF}, \ C_{f1} = C_{f2} = 59.16 \text{ nF}, \ C_3 = 17.0 \text{ nF}, \text{ and } C_{f3} = 47.8 \text{ nF} \). The rectifier DC voltage is set to 250 V, and the maximum inverter DC voltage is set to 450 V for the 6.4 kW system and the maximum inverter DC voltage is set to 300 V for the 1.0 kW system.

The RMS values of the coil currents are plotted in Fig. 13. The output power and the DC–DC efficiency of the two power levels are depicted in Fig. 14. The discrepancies of the output power for the 1.0 kW system is caused by the discontinuous rectifier current waveforms. Nevertheless, the DC–DC efficiencies of the two systems can be over 95%.

The experimental waveforms of the three cases are shown in Fig. 15.

5 Conclusion

This paper studied the compatibility of wireless charging of EVs at both high-power and normal power levels sharing the same receiver. Two different power levels, i.e. a 120 kW FWC at a 35 mm charging distance and a 7 kW NWC at a 150 mm charging distance, are achieved with relatively high efficiency using the LCC–LCC topology through simulation. The relationship between the coil size and the power level was investigated. For a given power level, the required coil size can be estimated. Based on the estimated coil size for the target power level, the wireless charging system compatible of FWC and NWC with the same receiver was
designed. The output power of the LCC–LCC topology decreases with the decreasing coupling coefficient which offers a better controllability for the WPT system. To keep the receiver in resonance at the two charging distances, the coils should be carefully designed such that the inductance variation ratios of the main coil and the auxiliary coil due to the charging distance
variation are the same. By setting the transmitters with different α_1 and different inverter DC voltages, the compatibility of 120 kW FWC and 7 kW NWC with the same receiver was achieved. Simulations were conducted to verify the design.

A downscaled prototype was built with a rated power level of 6.4 and 1.0 kW. The equal inductance variation ratios of the main coil and the auxiliary coil was achieved. The experimental results showed that a DC–DC efficiency of over 95% can be achieved for the two different power levels with the same receiver.

6 Acknowledgments

The authors would like to thank Huawei Technologies CO., LTD for the support of this Study under the US-China Clean Energy Center – Clean Vehicle Consortium.

7 References

[16] Zimmer, M., Heinrich, J., Parspour, N.: ‘Design of a 3 kW primary power supply unit for inductive charging systems optimized for the compatibility to receiving units with 20 kW rated power’. Int. Electric Drives Production Conf. (EDPC), Nuremberg, Germany, 2014, pp. 1–5

Fig. 15 Experimental waveforms
(a) 6.4 kW system at (0 mm, 0 mm), (b) 1.0 kW system at (0 mm, 0 mm), (c) 1.0 kW system at (75 mm, 100 mm)