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� The battery state of health is taken into account to extend the application.
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In this paper, an energy management strategy is proposed for a series plug-in hybrid electric vehicle. A
number of quadratic equations are employed to determine the engine fuel-rate with respect to battery
power. The problem is solved by using quadratic programming and simulated annealing method together
to find the optimal battery power commands and the engine-on power. The influences induced by the
inertias of the engine and generators are analyzed to improve the calculation precision. In addition,
the state of health of the battery is taken into account to extend the application of the proposed method.
Simulations were performed to verify that the proposed algorithm can decrease fuel consumption of
plug-in hybrid electric vehicles.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, plug-in Hybrid Electric Vehicles (HEVs) have attract-
ed considerable attention due to the advancement of both Electric
Vehicles (EVs) and HEVs. Plug-in HEVs can be powered by an
internal combustion engine (ICE) or an electric motor together an
energy storage system, such as a battery pack [1,2]. In addition,
the battery can be charged from the power grid, thereby providing
an all-electric driving range (AER). For a plug-in HEV, its user
always prefers to use the stored electricity to power the vehicle
first, since the price and the economy of the electricity are more
competitive than gasoline. A low cut-off threshold can explain
the maximum discharge energy of the battery. This threshold can
be measured by the state of charge (SOC), which presents the
percentage of the available battery capacity over the nominal capa-
city [3]. Before the SOC reaches the predetermined threshold, the
vehicle is only powered by the battery – a process called charge
depletion (CD) mode. After the SOC reaches the cut-off threshold,
the vehicle is powered by the engine and the battery together –
referred to as charge sustaining (CS) mode [4]. The CD/CS mode
is the easiest and most direct way to realize energy management
in a plug-in HEV; however, this method can only partially optimize
the fuel economy by properly determining its control parameters,
since it does not globally consider the energy distribution opti-
mization in a certain driving trip. This method can be further
improved with the help of modern intelligent transportation sys-
tem (ITS) and the intelligent energy management strategies [5].

The energy management for plug-in HEVs can be regarded as a
stochastic optimization problem. Provided that all the driving
information is known before the trip starts, the optimal energy
management can be obtained with the targets of improving fuel
economy [6], reducing emissions [7], and decreasing the overall
cost in view of the prices of electricity and fuel gasoline [8], etc.
This has prompted many researchers to attempt to optimize the
energy management by applying various control algorithms, such
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as rule-based methods [9,10], optimal theory [11–16], artificial
intelligence methods [14,15,17–24], and analytical methods. A
comparative study for energy management of HEVs is proposed
in [25,26] which classifies all the methods into two main classes:
(1) rule-based control, and (2) optimization approach control.
Rule-based methods [9,10] are simpler, easier to apply, and more
reliable than optimization approach control methods, and they
have been widely adopted by vehicle manufacturers. However, it
is difficult to find an optimal solution only based on the rules,
and sometimes it can be very complex. Methods based on dynamic
programming (DP) [17,20,22,23,27,28] and Pontryagin’s Minimal
Principle (PMP) [5,29,30] occupy considerable percentages among
all the control methods due to their claims of finding the global
optimal solution. However, DP suffers from the computation com-
plication, which is referred to as the ‘‘curse of dimensionality,’’
while PMP involves solving a complex Hamilton function that is
constrained by the boundary conditions and derivation of the vari-
ables [29]. Some adaptive optimal control strategies are also pro-
posed without knowing the detailed trip information [31].
Quadratic programming (QP) [32] and convex optimization based
methods [33] bring much attention by researchers, provided that
the driving conditions can be known in advance. Equivalent con-
sumption minimization strategy (ECMS) [11,21,34] is also a popu-
lar control strategy which translates the global optimization into
local minimization. For a plug-in PHEV, it becomes difficult to
apply optimally for different driving conditions. Artificial intelli-
gent methods, such as neural networks (NN) [13], fuzzy logic
[17], genetic algorithm (GA) [32], particle swarm optimization
[26,35], and the simulated annealing (SA) method [5], have all been
successfully applied to improve the energy management. NN
[12,13] methods require sufficient data to train all the possible
combinations of the road conditions. Fuzzy logic [17] can only
obtain an approximately optimal result; in addition, considerable
effort is needed to build the fuzzy logic table. GA [32] is time-con-
suming because the algorithm must complete a series of actions
that include crossover, mutation, and elite selection. Analytical
methods [36–38], and the model predictive control method [39]
are also candidates for improving energy management of plug-in
HEVs. In [36], the energy management strategy is stated by a pair
of parameters which define the battery’s optimal power and the
engine-on power threshold. The research objects can be classified
into series plug-in HEVs, parallel plug-in HEVs, power-split plug-
in HEVs [2], as well as some particular structures, such as the
Chevy-Volt [25,40] and the Honda Accord [41].
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Fig. 1. Powertrain structure of a series plug-in HEV.
In this paper, the research target is a series plug-in HEV [42],
whose powertrain structure is shown in Fig. 1. It can be observed
that the engine is totally separate from the driving train, and thus
cannot power the vehicle directly. Obviously, the vehicle is a sys-
tem with two degrees-of-freedom, which brings certain com-
plexities to splitting the energy distribution, compared with
splitting the energy distribution in a vehicle with only one
degree-of-freedom, such as a parallel HEV with a fixed gear ratio.
Consequently, the developed algorithm in this paper can be also
applied to a parallel plug-in HEV or a power-split plug-in HEV.
To simplify the problem, a novel method is proposed herein to
transform the degrees-of-freedom from two to one, as detailed in
Section 2. Quadratic equations are then introduced to build the
nonlinear relationship between the engine fuel-rate and the input,
i.e., the battery power. Then, given the vehicle trip speed and pow-
er demand, the quadratic programming (QP) method [32] and the
SA method are introduced to find the global optimal solutions,
including battery power and engine-on power. The interior-point
method is applied to solve the QP problems. Compared with the
DP based methods [13,17], the QP methods needs less time to fin-
ish the energy distribution without influencing the optimization
results. The SA method is also faster to find an quasi-optimal
engine-on power than neural network method [12,13,43] and
genetic algorithm [32]. During the process of calculating the power
demand, the influences induced by the inertias of the engine and
generator are considered in order to improve the calculation preci-
sion. In addition, a battery management system (BMS), which
monitors and oversees the battery pack, can provide detailed bat-
tery information, such as SOC [3], state-of-health (SOH) [44], and
other related information to the vehicle controller [45]. The SOH
can reflect the maximum available energy stored in the battery
pack, which varies with temperature and battery degradation.
Here, the SOH is also added into the controller to provide more
considerations to extend the application of the proposed method.
Finally, simulations are performed to verify the improvements of
the proposed method.
2. Vehicle driveline analysis and simplification

As shown in Fig. 1, the vehicle consists of an engine, a generator,
a battery pack, and a motor. These parameters are briefly summa-
rized in Table 1. The maximum engine power is 60 kW, and the
nominal voltage and rated capacity of the battery are 260 V and
41 Ampere-hour (Ah), respectively. The maximum motor power
is 62 kW. Based on Fig. 1, the fuel consumption can be calculated,

F ¼
Z ttotal

0
mf dt ð1Þ

mf ¼ f ðTe;weÞ ð2Þ

where mf is the fuel-rate calculated by engine speed we and engine
torque Te, and F is the total fuel-consumption. In order to calculate
mf, the vehicle powertrain should be analyzed in detail to find
which variable can regulate we and Te. From Fig. 1, based on the
Table 1
Vehicle specifications.

Type Power-split plug-in HEV

Vehicle mass 1925 kg
Drive type Forward wheel drive
Lithium-ion battery Rated capacity 41 Ah
Engine Maximum power 88.3 kW
Motor Rated power 62 kW
Generator Rated power 45 kW

Maximum power 75 kW
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vehicle speed vo and the driveline power demand Po, the motor
power Pmot in and the motor speed wmot can be formulated,

wmot ¼ vo
wheel r � f d ratio

Pmot in ¼ Po=gðwmot; TmotÞ

�
ð3Þ

where wheel r and gðwmot ; TmotÞ denote the radius and efficiency of
the motor, and f d ratio is the final driveline ratio, which represents
the speed ratio between the motor and the wheels. In this paper,
the vehicle parameters are from a template of the simulation
software Autonomie [46]. In this model, f d ratio equals 4.231. The
generator power Pgen out can be determined according to Pmot in,

Pgen out ¼ Pmot in þ Pbat þ PL ð4Þ

where Pbat is the battery power, and PL is the accessory power,
which is supposed to be a constant, i.e., 200 W.

The temporary engine power P�eng can then be formulated
accordingly,

P�eng ¼ Pgen out=ggen ð5Þ

where ggen represents the efficiency of the generator. Since the
powertrain of a series HEV (SHEV) has two degrees-of-freedom,
the optimized engine speed with which the engine can output
power P�eng most efficiently can be determined,

w�eng ¼ gðP�engÞ: ð6Þ

Fig. 2 shows the optimal engine speed profile with engine pow-
er as the input. It can be observed that the speed profile is almost
linear with the engine power. Based on the calculated w�eng and P�eng ,
the temporary generator power P�gen out can be easily calculated,

P�gen out ¼ gðw�eng ; T
�
engÞ ð7Þ

where T�eng denotes the engine torque. Here, a power difference Pd

between Pgen out and P�gen out can be obtained,

Pd ¼ ðPgen out � P�gen outÞ=ggen: ð8Þ

Now, the engine power Peng, and engine speed weng can be
consequently updated,

Peng ¼ P�eng þ Pd ð9Þ
weng ¼ gðPengÞ ð10Þ
Teng ¼ Peng=weng : ð11Þ

From (3) to (4), it is clear that mf can be determined by Po, vo, and
Pbat,

mf ¼ f ðTeng ;wengÞ ¼ f ðPo; Pbat;voÞ: ð12Þ

Since the energy distribution controller cannot compromise the
performance of the vehicle, the driveline power Po and vehicle
speed vo are pre-determined at each step. Therefore, only Pbat can
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Fig. 2. Optimal engine speed profile.
be the input determining mf. Since Po and vo vary with the driving
conditions, it becomes difficult to build a relationship between mf

and Pbat. In order to simplify the problem without influencing the
precision, a number of quadratic equations, whose coefficients
are determined by Po and wo, are introduced to formulate the
fuel-rate mf with battery power Pbat,

mf ¼ u2ðwo; PoÞ � P2
bat þu1ðwo; PoÞ � Pbat þu0ðwo; PoÞ ð13Þ

where u2ðwo; PoÞ, u1ðwo; PoÞ, and u0ðwo; PoÞ are coefficients of the
quadratic equations [13]. It should be mentioned that when the
engine is off, the fuel-rate equals zero, thus

mf ¼
u2ðwo;PoÞ �P2

batþu1ðwo;PoÞ �Pbatþu0ðwo;PoÞ engine on¼ 1
0 engine on¼ 0

(

ð14Þ

Here, a simplified battery model is selected to calculate Pbat, as
shown in Fig. 3. It can be observed that the battery model is com-
prised of an open circuit voltage (OCV) source and an internal
resistor, which are connected in series. Based on this simplified
model, Pbat can be determined,

Pbat ¼ Eo � i� i2R0: ð15Þ

where Eo is the OCV, and R0 is the internal resistance. Accordingly,
the battery current and the SOC can be calculated,

i ¼ Eo�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

o�4R0Pbat

p
2R0

SOC ¼ SOC0 � 1
Cbat

R T
0 idt

8<
: ð16Þ

where SOC0 is the initial SOC when the trip begins, and Cbat is the
battery current capacity.

It is worth to mention that the average values of the OCV, the
internal resistor of the battery, and generator efficiencies are used
to obtain these coefficients. The maximum driveline power and the
maximum speed of the vehicle should be 62 kW and 38 m/s,
respectively. The increments of maximum driveline power and
maximum speed necessary to obtain u2ðwo; PoÞ, u1ðwo; PoÞ, and
u0ðwo; PoÞ by the curve-fitting method are 1 kW and 0.5 m/s,
respectively; therefore, the dimensions of these coefficients are
62 by 76. As can be seen from Fig. 4, u2ðwo; PoÞ is always more than
zero, while u1ðwo; PoÞ is always less than zero. Thus, this case is a
typical convex optimization problem. Fig. 5 compares the fuel-
rates obtained by simulation and by calculation based on the
quadratic equations, hence proving that the quadratic equations
can approximate the fuel-rate effectively.

Now, based on (14), the engine start/stop commands, together
with the battery power commands, can be potentially optimized
to reduce the fuel consumption. In the next step, the QP and SA
methods will be applied to control the commands, thereby
reducing the fuel consumption for series plug-in HEVs.
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Fig. 3. Battery model.
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3. Quadratic programming and simulated annealing application

The subject of this paper can be clearly regarded as a quadratic
programming problem with varied coefficients. However, the
engine on/off commands should be tackled properly in advance,
since the problem is highly nonlinear due to the stochastic driving
conditions. Here, the SA method is introduced to estimate the
engine-on power based on driving conditions and fuel-rate
equations [5]. The SA method is effective in solving unconstrained
and bound-constrained optimization problems, since it can find a
quasi-optimal solution for these problems with higher computa-
tional efficiency than an exhaustive method. Compared with the
method proposed in [5], the SA method is applied with a shorter
calculation time and without influencing the performance of the
controller. During the iteration process, the interior point method
is introduced to solve the proposed QP problem to determine the
optimal battery powers. The interior point method is a program-
ming method that realizes optimization by penetrating the middle
of the solid defined by the problem, instead of around its surface.
This method is widely adopted by researches in order to find the
optimal solutions for convex optimization problems with high
computational efficiency [47,48]. In this paper, the interior point
method is realized by Matlab [49].

The whole algorithm application is shown in Fig. 6. First, the
current AER is estimated by the battery current SOC and SOH. Cur-
rently, some artificial intelligent methods have been applied to
estimate the AER precisely [50], however, these methods are not
realistic in plug-in HEVs due to large calculation labor. Here, a
relatively simple method is introduced to calculate the AER based
on the specifications of the vehicle. Suppose the maximum AER
when the battery is with rated capacity is LAER0, the current AER
can be estimated based on the current battery SOC SOC0, and bat-
tery SOH h,

LAER ¼ LAER0 �
SOC0 � SOCs

1� SOCs
� h ð17Þ

where LAER is the calculated AER, SOCs is the cut-off threshold at
which the vehicle controller is transferred from the CD mode into
the CS mode. In this paper, SOCs equals 0.3. If the AER is greater than
the trip length, the vehicle will only be powered by the battery. If
the AER is less than the trip length, the SA and the interior point
methods will be applied together to find the controlling commands,
i.e., engine-on power and battery powers.

The realization of the SA method and the interior point method
in solving the QP problem is depicted in Fig. 7. The engine-on pow-
er and the fuel-consumption are chosen as the control input and
the target, respectively. First, the SA method selects a random val-
ue for the engine-on power as the initial input. Usually a high value
is set in advance; when the algorithm runs, the engine-on power
decreases gradually. A new value is randomly generated based
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on the present value when the next iteration begins. The interval
between the updated and the current values of the engine-on pow-
er is subject to a probability distribution. In this way, the SA
method is prevented from sinking into a local minimum region,
and has the ability to find a better solution globally. When the ter-
mination conditions are reached, the iteration processes will stop
and eventually output the optimal battery powers along with the
engine-on power.

During the calculation, some constraints should be properly
considered,

0 < Peng on 6 Peng on max

Pbat minðtÞ 6 PbatðtÞ 6 Pbat maxðtÞ
0:2 6 SOC 6 0:9

8><
>: ð18Þ

where Peng on max represents the minor values of engine maximum
power Peng max and driveline maximum Pomax, Pbat minðtÞ and
Pbat maxðtÞ are the minimum and maximum battery powers, and
the SOC is within [0.2,0.9], while its final value when the trip ends
is set to be 0.3. In order to improve precision, the inertia influences
of the generator and the engine are also taken into consideration.
When the driveline power changes, the engine and the generator
must accelerate or decelerate to meet the power demand, therefore,
the driveline power can be updated,

PonewðtÞ ¼ PoðtÞ þ ðJeng þ JgenÞ � ðwðtÞ �wðt � 1ÞÞ=Dt �wðtÞ ð19Þ

where Jeng and Jgen denote the inertias of the engine and the gen-
erator, and Dt is the data acquiring interval. In this paper, Dt equals
1 s. w(t) represents the rotating speeds of the engine and the gen-
erator, and PonewðtÞ is the updated driveline power to calculate the
fuel-rate based on (13).

In this paper, the maximum limit of iteration for the SA calcula-
tion is 40, the initially iterated value of the engine-on power is the
minor value of 30 kW and Peng on max, and the termination tolerance
on the function value is 0.005. The next step is to conduct the
simulations to show the calculation process and to compare the
control performance.

4. Simulation validation

Simulations are necessary to test and verify the performance of
the built algorithm. In this paper, a powerful vehicle simulation
software, Autonomie, is introduced to simulate vehicles with dif-
ferent control algorithms. Autonomie, developed by Argonne
National Laboratory, can effectively model a vehicle, apply a con-
troller for the vehicle, validate the performance of the vehicle,
and program the controller with high precision [46]. From (16), Cbat

is the battery capacity, which varies with the battery temperature
and battery usage. Thus, if the battery capacity can be determined
in advance, the proposed algorithm can still be applied to improve
the fuel economy regardless of the battery’s health status. There-
fore, the simulations were separately conducted with healthy
and unhealthy batteries.

4.1. Simulation with a healthy battery

The Highway Fuel Economy Test (HWFET) cycle [5] and the
Urban Dynamometer Driving Schedule (UDDS) were adopted to
simulate the vehicle based on the different energy management
algorithms. Their speed curves are shown in Fig. 8. It can be
observed that the HWFET cycle is used to simulate highway fuel
economy, while the UDDS cycle simulates an urban route.

First, the simulation based on the CD/CS mode was bench-
marked for comparing the improvement of fuel consumption.
The beginning SOC is set to 90%. During the CD mode, the engine
is always off and only the battery powers the vehicle. When the
battery is discharged until the SOC reaches near 30%, the control
strategy is transferred into the CS mode. Then, the engine is turned
on and the vehicle is powered by the engine and battery together,
thus maintaining the battery SOC in the vicinity of 30%. During the
CS mode, the battery power can be calculated,
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Pbat ¼

Po SOC>36%

minð7395:3 � ðSOC�0:33Þ=0:03þ30381:3;PoÞ 33%6 SOC<36%

minð30381:3 � ðSOC�0:3Þ=0:03;PoÞ 30%6 SOC<33%
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where maxð Þ and minð Þ denotes the maximum and minimum val-
ues of the two values included in the parenthesis, and Peng max is the
maximum engine power. Once the engine power is determined, the
vehicle controller will seek the optimized combination of engine
torque and speed based on Fig. 2, making the engine working most
efficiently. It is necessary to mention that the minimum engine on
and off time is 2 s, and 1.5 s, respectively. In addition, the engine-
on and engine-off power thresholds are 25 kW, and 6 kW, respec-
tively. All the coefficients in (20) and engine operation parameters
have been optimized by the developers of Autonomie according to
the characteristics of the motors and the engine. Thus, the CD/CS
strategy can also be treated as an optimized method to some extent.
Fig. 9 shows the iteration process of the SA method for eight con-
secutive UDDS drive cycles. The iterations threshold for the SA is
set to 40, compared with 100 in [5], as this value is enough to obtain
a good result with much less calculation labor. Based on the calcu-
lation of the proposed algorithm, the engine-on power and the bat-
tery power commands when the engine is on can be obtained. The
engine-on power after calculation is 16.25 kW. It means that when
the driveline power demand is less than this threshold, the engine
will be off, and the vehicle will be powered by the battery only;
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when the driveline power demand is more than this threshold, the
engine will be turned on, and the vehicle can be powered by the
engine and the battery together. Fig. 10 presents the engine on/off
commands, and the corresponding commands of the battery and
engine power. For ease of review the results, we only display por-
tion of the duration during the simulation, from 4270 s to 4500 s.
It can be observed that when the engine is off, the battery power
commands are always larger than the driveline power demands,
since there exists losses when the battery powers the vehicle or is
charged from the braking energy regeneration. When the engine
is on, the calculated engine power commands are always more than
20 kW, and the corresponding battery power commands are less
than zero. This means that the proposed algorithm tries to maxi-
mize the engine efficiency to charge the battery and power the
vehicle simultaneously with higher power output that represent a
higher efficiency of the engine, by searching the optimal combina-
tions of the engine speed and engine torque according to Fig. 2.
Moreover, the proposed algorithm prevents the battery from being
discharged with large current, thus bringing higher battery efficien-
cy. The simulation based on the calculated battery commands and
the engine-on power was conducted with the final fuel consump-
tion of 2.012 kg, as presented in Fig. 11. Compared with the CD/CS
mode, the proposed method can reduce fuel. It can also be observed
that, based on the CD/CS method, the engine is always off until
around 5000 s. Fig. 12 compares the variations in SOC according
Table 2
Results comparison when the beginning SOC is 90%.

Drive cycle CD/CS algorithm The P

Fuel-consumption (kg) Ending SOC (%) Fuel-c

6 UDDS 1.131 28.51 1.047
7 UDDS 1.616 28.49 1.522
8 UDDS 2.101 28.47 2.012
9 UDDS 2.586 28.46 2.476
6 HWFET 2.448 30.53 2.318
7 HWFET 3.139 30.53 2.987
8 HWFET 3.830 30.53 3.659
9 HWFET 4.520 30.53 4.325
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Fig. 14. LA92 drive cycle speed profile.

Table 3
Results comparison when the battery is unhealthy.

Drive cycle CD/CS algorithm Proposed

Fuel-consumption (kg) Ending SOC (%) Fuel-cons

7 LA92 3.930 29.26 3.905
8 LA92 4.705 26.26 4.671
9 LA92 5.470 26.26 5.434
to the application of different energy management methods. Obvi-
ously, the proposed methods can make the battery discharge more
slowly compared with the CD/CS method. In order to compare the
fuel consumption more equally, a linear approximation method is
introduced to locate the ending SOC with the same value [37]. With
the SOC corrected, the proposed method can reduce fuel consump-
tion by up to 4.29%. Fig. 13 compares the engine efficiencies when
different methods are applied. We can conclude that the average
efficiency is higher when the proposed algorithm is applied. Table 2,
which compares the results when six to nine UDDS and HWFET
cycles are simulated, shows that the proposed controller can reduce
the fuel consumption by 3.78–5.10%. The calculation was completed
within 1.5 min employing a laptop computer with 8 gigabits of RAM
and 2.9 GHz of core i7 processor, thus proving that it is possible to
apply the method in the actual vehicle operation.

4.2. Simulation with an unhealthy battery

In order to validate the robustness of the proposed controller,
simulations were performed with unhealthy batteries. The battery
capacity was set to 90% of the rated capacity. The battery internal
resistance increases and the battery open circuit voltage decreases
by 10%, respectively. LA92 drive cycles were simulated, with speed
profiles depicted in Fig. 14. Table 3 lists the results, from which it
can be observed that the proposed algorithm can save up to 0.56%,
1.62%, and 1.46% when seven to nine LA92 drive cycles are simulat-
ed. These results indicate that even when the battery becomes
unhealthy, the proposed algorithm still remains effective in
improving the energy management for a series plug-in HEV.
5. Conclusion

In this paper, an intelligent algorithm based on the QP and SA
methods is proposed for the energy management of a series
plug-in HEV in order to reduce the fuel consumption. A number
of quadratic equations are introduced to quantify the fuel-rate
with battery power. Based on the analysis of the problem, the SA
method is applied to search the optimal engine-on power. The
interior point method is introduced to solve the QP method.
Through simulations, the proposed algorithm is proven to be effec-
tive in improving the fuel economy regardless of the battery’s
roposed algorithm Savings (%) (SOC corrected)

onsumption (kg) Ending SOC (%)

27.12 5.10
27.18 4.28
28.53 4.29
27.81 3.78
29.43 4.46
29.22 4.05
28.97 3.69
29.08 3.71

algorithm Savings (%) (SOC corrected)

umption (kg) Ending SOC (%)

29.10 0.56
28.54 1.6
28.57 1.46
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health status. Simulations revealed that the proposed algorithm
can clearly reduce fuel consumption.

Currently, the algorithm proposed in this paper replies on
knowing the driving conditions. A driving condition identification
technique should be considered in order to extend the applicability
of the proposed method. As our next step, experimental validations
including the actual vehicle test or hardware-in-the-loop test will
be the focus of our future work.
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