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Abstract—This paper focuses on the intrinsic aspects of power
management for hybrid electric vehicles (HEVs) and plug-in
HEVs (PHEV). A vehicle power distribution density function
is used to describe the drive cycle characteristics. An electric
driveline loss is introduced to describe the minimum system loss
for a given mechanical power output, and a piecewise linear
fuel consumption model is used to capture essential characteris-
tics such as idle fuel consumption rate, peak efficiency, and the
minimum power to reach peak efficiency. Models are based on
the assumption that both machines operate at the optimal speed
and torque for a given mechanical power as if they are coupled
with an ideal continuous variable transmission (CVT). The power
management strategy is represented with a pair of power pa-
rameters that describe the power threshold for turning on the
engine and the optimum battery power in engine-on operations.
The model of a parallel hybrid electric powertrain is constructed
to obtain optimal solutions that maximize the fuel economy for
a given battery energy depletion and for a general vehicle power
distribution density function. One-dimensional loss models of two
power sources as approximations to real machines coupled with
hypothetic CVTs are introduced to solve the optimization problem
analytically. It is found that the optimal minimum engine power
is the controlling factor in minimizing the total fuel consumption
for the given battery energy depletion targets and that the optimal
power is solely determined by powertrain characteristics. Numer-
ical simulations validated the properties of the optimal power
solutions obtained through analytic approaches. The significance
of the results to real-world HEV and PHEV applications are also
discussed.

Index Terms—Analytical method, blended plug-in hybrid
electric vehicles (PHEV), electric vehicle, parallel hybrid, plug-in
HEV (PHEV), power management.

I. INTRODUCTION

HYBRID and plug-in hybrid electric vehicles
(HEV/PHEV) have become promising in the automotive

world because of their low fuel consumption and low
emissions. The inclusion of the secondary power source
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(battery and electric motor) leads to the benefits of improved
fuel efficiency and reduced emissions [1]–[5]. The propulsion
power in HEV/PHEV comes from two drive trains: 1) the
electric drive train and 2) the internal combustion engine (ICE)
drive train. The general problem in HEV/PHEV propulsion
system design is how to optimize the power split between
the battery and the engine to minimize fuel consumption
and emissions while maintaining good driving performance
[6]–[11].

PHEVs use grid electricity to power the vehicle for an initial
driving range, referred to as charge depletion (CD) mode. Using
electric energy from the utility grid to displace part of the fuel
is the major feature of PHEVs [12]–[23]. There are two basic
types of PHEV: 1) extended range electric vehicles (EREVs)
and 2) blended-mode PHEVs.

EREVs offer pure electric driving capability in the initial
driving range, referred to as all-electric range (AER). To re-
alize pure electric driving in all driving conditions, EREVs
are equipped with a full-sized traction motor powered by the
battery pack. One of the disadvantages of EREVs is the in-
creased system cost due to the full-sized traction motor and
power requirements for the battery; the other is the high losses
in the electric system (battery and electric motor) at high
power operations. These constraints have led to the concept of
blended-mode PHEV.

A blended-mode PHEV usually has less electric drive capa-
bility. Therefore, it can typically achieve cruise and moderate
acceleration in the electric mode at low to moderate vehicle
speeds. For operations requiring either higher power or higher
torque, the thermal engine must be used either with or without
electric assistance, depending on vehicle control strategies. The
blended operation can also be adopted by EREVs to reduce
system losses at higher power demands.

One of the PHEV’s primary capabilities is fuel displacement
by depleting the onboard electric energy storage system (ESS)
to a preset low-threshold state of charge (SOC). It is generally
desirable that the onboard ESS has reached this depleted state
(charge sustaining SOC) by the end of the “designed” vehicle
travel distance. On one hand, aggressive CD may result in a
higher electric loss incurred in the vehicle system and affect
the overall energy efficiency of the vehicle, i.e., more energy
is consumed whether it is from gasoline or electricity. On the
other hand, vehicles with less than sufficient charge-depleting
operations may not achieve fuel displacement function as de-
signed, and the capacity of the onboard ESS is underutilized.
Therefore, how to achieve optimized CD operations in PHEV
applications is one of the fundamental problems of PHEV
control.

0018-9545/$31.00 © 2012 IEEE
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Control strategies for a blended-mode PHEV can be complex
and multidimensional and will have significant impact on vehi-
cle performance, drivability, and fuel consumption [24]–[31].
In [24], a comparison between AER strategy and blended mode
CD strategy were investigated, and it was concluded that the
proposed blended mode strategy can improve a PHEV’s fuel
economy by up to 9% for a power-split configuration. Most of
the gain is from operating the engine more efficiently. However,
detailed control algorithm, such as engine on–off threshold, was
not explicitly given. In [25] and [26], stochastic dynamic pro-
gramming was used to develop a supervisory control strategy
for a hybrid vehicle that coordinates the operation of vehicle
subsystems to achieve performance targets such as maximizing
fuel economy and reducing exhaust emissions. PHEV is not
studied in this paper. In [27], an intelligent energy management
system was developed to intelligently allocate power to the ve-
hicle battery chargers through real-time monitoring and control
to ensure optimal usage of available power, charging time, and
grid stability. Vehicle operating efficiency is not one of the goals
of this paper. In [28], a comparative analysis is presented of
the fuel economy and the greenhouse gas emissions between a
conventional HEV and the PHEV developed at the University
of Technology, Sydney. A special energy management strat-
egy was developed for the power management of the PHEV.
The control is a rule-based strategy that controls the single
onboard electric machine to operate either as a motor or as a
generator. In [29], an energy storage management strategy is
developed for the PHEV based on a heuristic and on a model
predictive control scheme to realize the balancing functions for
the power grid using PHEVs. In [30] and [31], the effects of
different PHEV control strategies on the vehicle performance
of HEV and PHEV are compared, and in [30], the focus is
on conventional HEV with emphasis on developing control
strategies based on intelligent systems approaches. In [31], an
equivalent consumption minimization strategy was developed
to control the PHEV in both EV and blended modes. The
focus of these control strategies is primarily intelligent-system-
based approaches. Due to the complexity and computation time
needed in these control strategies, it is often hard to implement
in real time for the vehicle control, although they seem feasible
in simulations. It is also unclear whether an “optimal charge-
depleting strategy” calibrated for a given drive cycle and a
battery depletion target remains optimal for different drive
cycles and battery depletion targets [32]–[38].

In an earlier paper published by two of the authors of this
paper, a control strategy based on optimal power operations
of the PHEV was developed [39]. Based on the proposed
strategy, if the trip distance exceeds AER, the proposed optimal
power strategy can perform better than the electric dominant
control strategy. Only the total fuel consumption during specific
drive cycles are considered based on the electric system loss
characteristics, vehicle power demand, total battery energy,
and trip distance. It does not rely on detailed trip information
other than the total trip distance. Therefore, it is possible to
implement the control strategy in real time if the total distance
is known before the trip. Since most people commuting to work
know their approximate driving distance, this control strategy
can potentially provide significant fuel savings. While the focus

of that paper is on PHEV, and the engine on/off threshold was
derived for the optimal power control strategy, the paper does
not give a generalized solution for overall vehicle level fuel
optimization, such as cycle characteristics, battery depletion
targets, and powertrain characteristics.

Therefore, it is the motivation of the authors of this paper
to provide the insights about how the optimal charge-depleting
strategy is related to powertrain system characteristics, cycle
characteristics, and battery energy depletion targets and to
provide the basic properties of the optimal strategy that can be
used for real-world applications. Simplified models that capture
the very essences of the system are introduced for developing
analytic solutions to the optimization problem, as defined in this
paper. Hence, this paper focuses on the control parameter opti-
mization for a parallel PHEV. The PHEV model is defined on
the basis of ICE fuel consumption characteristics and electric
power loss characteristics. The detailed mathematic analysis
is employed to obtain the optimal solutions. The impacts of
vehicle system properties, driving cycles, and battery energy
depletion targets on the optimal strategy are evaluated through
simulations. The general properties of the control strategy and
their significance to parallel PHEVs and HEVs are discussed.

II. MODEL CONSTRUCTION

In this paper, a parallel ICE–electric powertrain architecture
is defined as shown in Fig. 1. In this architecture, the propul-
sion power comes from two energy resources: 1) gasoline-
based ICE and 2) electricity-based battery pack. A parallel
gasoline–electric hybrid transmission is capable to transmit
the desired ICE power and desired motor mechanical power
to meet the vehicle driving power demand. When the engine
output power exceeds the driving power demand, the excessive
power will be used to recharge the battery through the electric
driveline.

In this paper, the vehicle power demand is defined as the total
required mechanical power Po from the vehicle power plant
without frictional braking. It includes the accessory power,
driveline losses, and the wheel driving power needed for vehicle
acceleration under vehicle road loads.

A. Electric Loss Model

As shown in Fig. 1, the battery power is the sum of the
mechanical power output from the electrical motor and the
total power losses of the battery, converter, and electric motor.
Among these losses, battery loss is more significant at high
discharge power. The electric losses in the PHEV include
battery, electric motor, and inverter losses. These losses can
be divided into three types. The first type is the frictional and
windage loss in the electric motor, which is a function of motor
speed and load torque. The second type is the magnetic loss
in the motor, which is related to the magnitude and frequency
of the supply voltage. The last type is copper loss in the motor
and internal loss in the battery due to battery internal resistance.
This last type of loss is proportional to the current squared, i.e.,
out power squared if the voltage is assumed to be constant.
Hence, the total electric system losses include a portion that
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Fig. 1. Parallel HEV powertrain architecture, where is the engine power, Pb is the battery power, Pb_in is the total electrical power, Pem is the electric motor
mechanical power, Peng is the engine output power, Po is the total output power to the transmission, ηe is the engine efficiency, ηb is the battery efficiency,
ηm is the motor efficiency (including inverter), and ηtr is the transmission and drive line efficiency.

is constant (windage loss and some magnetic loss), a second
portion that is proportional to the output power (a portion of
frictional loss and some magnetic loss), and a third portion that
is proportional to the square of the output power (copper and
battery losses).

Therefore, the modeled losses, an approximation to true
losses (always positive) in the most efficient electric drive
operations for the given mechanical power outputs Po, can be
approximated as a second-order polynomial. For the analytic
part of this paper, it is assumed that

Pb = Pem + Loss(Pem) = Pem + L0 + APem + BP 2
em. (1)

It should be emphasized that the nonlinear term in the loss
function plays an important role in the optimization, as revealed
in later sections. The linear term is usually less significant
than the quadratic term resulting from losses such as copper
and battery ohmic losses. The proposed approximation of the
system electric power losses simply describes the fact about
the existence of system peak efficiency, and it is the simplest
nonlinear form that allows analytic solutions.

B. Vehicle Power Distribution Function

In a typical drive cycle with zero initial speed and zero final
speed, the distribution of vehicle power demand is shown in
Fig. 2. Certain characteristics of the distribution are common to
all cycles with zero initial and final speeds. First, there must be
a net energy consumed in the cycle, and therefore, the average
power of the cycle must be positive. Second, occurrences of
extreme positive power and extreme negative power occur
less than the rest. In obtaining the optimal solutions, only
a general distribution is assumed. In the simulation section,
the distributions of vehicle output power for a given total
energy consumption are modeled as a Cauchy distribution or a
superposition of Cauchy distributions limited by the minimum
and maximum powers, as shown in Fig. 3.

Specifically, the shadow area Φ(Po)dPo represents the time
that the transmission output power is within the interval of Po

and Po + dPo. Therefore, the total vehicle operation time in one
drive cycle is given as the integration of time over the whole
power range

T =

Pmax∫
Pmin

Φ(Po)dPo. (2)

Fig. 2. Vehicle power distributions.

Fig. 3. Idealized vehicle power demand distributions.

In this driving cycle, the average output power Po is

Po =

∫ T

0 Podt

T
=

∫ Pmax

Pmin
PoΦ(Po)dPo

T

=

∫ Pmax

Pmin
PoΦ(Po)dPo∫ Pmax

Pmin
Φ(Po)dPo

. (3)

C. ICE Fuel Consumption Characteristics

The fuel consumption rate of a nominal engine mainly
depends on engine speed and torque. If the engine operates
efficiently, the fuel consumption rate mainly depends on the
engine output power Peng. In this paper, it is assumed that
the fuel consumption rate depends on Peng only, as shown in
Fig. 4.
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Fig. 4. Fuel consumption of a nominal engine.

Here, a linear relationship is applied to obtain the optimal
solutions in a closed form

f = f0 + kPeng (4)

where the intercept f0 reflects the fuel consumption in engine
idle, and the slope k is a constant that reflects the combustion
efficiency approximately. A more accurate engine model, i.e.,
the piecewise linear model, will be discussed in Section IV, i.e.,

f =
{

fo + kPeng Peng ≤ P1

k1Peng Peng > P1.
(5)

D. Power Strategy

In a simplistic view, the essence of HEV operating strategy
is to determine when and how to run the engine in real time
to fulfill the driver’s request in terms of vehicle output torque
(or power) while maintaining battery SOC within a range and
minimizing frictional braking. Battery energy depletion targets
are introduced into the operating strategy for the case of PHEV.
In this paper, the control strategy is characterized by a pair
of parameters Ps and Pc, with Ps being the threshold of
transmission output power above which the engine is running
to propel the vehicle while maintaining a constant motor me-
chanical power Pc. This simple strategy captures the essence of
the more complicated and more realistic HEV control strategy
and allows the optimization problem to be formulated and
solved analytically. This strategy in one drive cycle is shown in
Fig. 5.

Pem can be expressed as a linear piecewise function

Pem =

{
Pemmin, Po ≤ Pemmin

Po, Pemmin < Po ≤ Ps

Pc, Ps < Po ≤ Pemmax

Peng =
{

0, Po ≤ Ps

Po − Pc, Po > Ps
(6)

where Pemmin is the maximum regenerative power, Ps is the
vehicle output power threshold above which the engine will
be turned on, and Pc is the constant motor mechanical power
during engine running. It is worth to point out that this Pc can
be positive (discharging the battery) or negative (charging the
battery).

Fig. 5. Power management strategy used in this paper.

E. Total Fuel Consumption and Total Battery Energy

By definition, the engine is off if Po is less than the threshold
Ps; therefore, the total fuel consumption in a drive cycle can be
obtained as

X(Ps, Pc) =

T∫
0

f(t)dt =

Pmax∫
Ps

f(Peng)Φ(Po)dPo

=

Pmax∫
Ps

f(Po − Pc)Φ(Po)dPo. (7)

The total net battery energy consumed in this driving cycle
can be obtained as the integral of battery power Pb over the
whole drive cycle [0, T ] and is considered as a constant

Eb(Ps, Pc) =

T∫
0

Pb dt =

Pmax∫
Pmin

PbΦ(Po)dPo = const. (8)

The preceding equation can be expanded as

Eb(Ps, Pc) =

T∫
0

Pb dt =

Pmax∫
Pmin

PbΦ(Po)dPo

=

Pmax∫
Pmin

[Pem + Loss(Pem)] Φ(Po)dPo. (9a)

Equations (6) and (9a) yield

Eb(Ps, Pc) =

Pem min∫
Pmin

[Pemmin + Loss(Pemmin)] Φ(Po)dPo
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+

Ps∫
Pem min

[Po + Loss(Po)] Φ(Po)dPo

+

Pmax∫
Ps

[Pc + Loss(Pc)] Φ(Po)dPo. (9b)

In this paper, the loss function is approximated as a second-
order polynomial

Loss(x) = Lo + Ax + Bx2, x = Pemmin or Po or Pc. (10)

The maximum net battery energy needed for all electric drive
Ebmax is introduced for convenience and is given as follows.
Ebmax is obtained by assuming that the vehicle is driven by
battery/motor only throughout the drive cycle without turning
on the engine, i.e.,

Ebmax(Ps, Pc) =Eb(Pmax, 0)

=

Pem min∫
Pmin

[Pemmin+Loss(Pemmin)] Φ(Po)dPo

+

Pmax∫
Pem min

[Po + Loss(Po)] Φ(Po)dPo. (11)

Obviously, Ebmax is a constant for a given drive cycle. The
difference between Eb and Ebmax is

E(Ps, Pc) =Ebmax(Pmax, 0) − Eb(Ps, Pc)

=

Pmax∫
Pem min

[Po + Loss(Po)] Φ(Po)dPo

−
Ps∫

Pem min

[Po + Loss(Po)] Φ(Po)dPo

−
Pmax∫
Ps

[Pc + Loss(Pc)] Φ(Po)dPo

=

Pmax∫
Ps

[Po + Loss(Po)] Φ(Po)dPo

−
Pmax∫
Ps

[Pc + Loss(Pc)] Φ(Po)dPo. (12)

For a given Eb, E(Ps, Pc) is also a constant, which is a
constraint to be used in later sections.

F. Optimization Strategy

In this paper, the objective is to minimize the fuel consump-
tion for constant battery energy depletion. Therefore, we can
formulate the optimization problem as

Minimize {X(Ps, Pc)} (13)

Subject to :

dE(Ps, Pc)
dPs

= 0. (14)

The optimal solutions P ∗
s and P ∗

c that minimize X(Ps, Pc)
satisfy (13) and (14), where P ∗

s is the optimal power threshold
to turn on the engine. If Ps = P ∗

s and Pc = P ∗
c , then

dX(Ps, Pc)
dPs

= 0. (15)

The derivative of the total fuel consumption with respect to
Ps can be obtained from (7) as

dX(Ps, Pc)
dPs

= − f(Ps − Pc)Φ(Ps)

+

Pmax∫
Ps

df(Pe)
dPe

·
(
−dPc

dPs

)
Φ(Po)dPo

= − f(Ps − Pc)Φ(Ps)

− keff

Pmax∫
Ps

(
dPc

dPs

)
Φ(Po)dPo (16)

where keff , as defined in (16), is the effective slope of engine
fuel consumption rate f(Peng). The introduction of keff greatly
simplifies the integration in (16). It is justified because the
derivative of f(Peng) is usually not a strong function of Pe in
the range of interest (not too far away from peak efficiency).
For the linear engine model described by (4), keff = k. For the
piecewise linear engine model described by (5), which is to
be used for later analysis and simulation, keff is bounded by
k ≤ keff ≤ k1. Although keff is treated as a system parameter
to be determined by (16), the treatment should not weaken the
general results of this paper.

From (14)

dE

dPs
= − [Ps − Pc + L(Ps) − L(Pc)] Φ(Ps)

+

Pmax∫
Ps

[−1 − L′]
dPc

dPs
Φ(Po)dPo = 0. (17)

That is

− [Ps − Pc + L(Ps) − L(Pc)] Φ(Ps)

− (1 + L′)

Pmax∫
Ps

(
dPc

dPs

)
Φ(Po)dPo = 0 (18)
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Fig. 6. Piecewise linear model of the engine fuel consumption rate.

where L′ = dL(x)/dx|x=Pc
. Equations (16) and (18) yield

dX

dPs
= −f(Ps − Pc)Φ(Ps)

+
keff

1 + L′ [Ps − Pc + L(Ps) − L(Pc)] Φ(Ps). (19)

Assume L(x) = L0 + Ax + Bx2, so L′ = A + 2Bx, i.e.,

dX

dPs
= −f(Ps − Pc)Φ(Ps) + keff(Ps − Pc)Φ(Ps)

+
keffB(Ps − Pc)2

1 + A + 2BPc
Φ(Ps). (20)

Let Δ (= Ps − Pc) be the minimum engine power, i.e.,

dX

dPs
=

[
−f(Δ) + keffΔ +

keffB

1 + A + 2BPc
Δ2

]
Φ(Ps). (21)

Let optimal solutions be P ∗
s and P ∗

c and the optimal Δ be

Δ∗ = P ∗
s − P ∗

c (22)

where Δ∗ is the optimal minimum engine power below which
the engine is off. Therefore, a general optimization solution can
be obtained from

−f(Δ∗) + keffΔ∗ +
keffB

1 + A + 2BP ∗
c

Δ∗2 = 0. (23)

A piecewise linear fuel consumption model, as depicted in
the following figure, is used for further analysis and simula-
tions. As shown in Fig. 6, f0 is the engine idle fuel consumption
rate, and k, k1, and k2 are the local slopes of engine fuel
consumption rate as a function of engine power. Within P1 and
P2, the engine has constant peak efficiency.

P1 is one of the important engine characteristics and is the
lowest engine output power with peak engine efficiency. P1 is
typically between 15 and 35 kW and depends on the engine
size, with higher P1 for bigger engines. The optimal solution
has an intrinsic relationship to P1, which will be elaborated
more in later sections. From the preceding figure, f0 + kP1 =
k1P1; therefore

P1 =
f0

k1 − k
. (24)

Two special cases of the engine model are considered as
follows.

1) Case for an ideal engine of constant efficiency.
From (5), f(x) = k1x. It is evident that f ′ = k1

and keff = k1. Therefore, (dX/dPs) = (k1BΔ2/1 +
A + 2BPc)Φ(Ps). In this case, the optimal solution is
given by Δ∗ = 0.

2) Case for a piecewise linear engine model. Assuming that
P2 > Pmax − Pc, then keff satisfies k < keff < k1.

It can be shown that the optimal solutions satisfy that Δ∗ ≤
P1. For if Δ > P1, then the Δ that corresponds to the minimum
fuel consumption is found as Δ = P1 based on (21) and case 1
analysis. Therefore, only the case of Δ ≤ P1 should be consid-
ered for the optimization. It follows that

dX

dPs
=

[
−f0 + (keff − k)Δ +

keffB

1 + A + 2BPc
Δ2

]
Φ(Ps).

(25)
Optimal solutions P ∗

s and P ∗
c satisfy

−f0 + (keff − k)Δ∗ +
keffB

1 + A + 2BP ∗
c

(Δ∗)2 = 0. (26)

Rearranging (26), we can obtain the following equation:

− f0

k1 − k
+

(keff − k)
k1 − k

Δ∗ = − keff

k1 − k
· BΔ∗2

1 + A + 2BP ∗
c

.

(27)
The following inequality is true, as derived from (16) and

(19), i.e., −P1 + ((keff − k)/k1 − k)Δ∗ < 0. Since ((keff −
k)/k1 − k) ≈ 1, we have

Δ∗ < P1. (28)

Therefore, if B > 0, then the optimal (P ∗
s − P ∗

c ) should be
less than P1. This will be verified in the simulation sections.

If B is small, a good approximation of the optimal solution
can be obtained as follows:

−P1 + Δ∗ = − k1

f0
P1

BΔ∗2

1 + A

Δ∗ ≈P1

(
1 − k1

f0

BP 2
1

1 + A

)
. (29)

Recall that Δ is the minimum engine output power for
engine-on operations, the optimal value of Δ is determined by
(26), and it is related to system parameters approximately by
(29). It clearly shows that the optimal Δ∗ is lower than P1 and
approaches P1 as the electric system becomes more efficient.
To reduce the electric loss, Ps should be reduced, and Pc should
be increased to maintain the same net battery energy depletion;
therefore, Δ is reduced to a lower level. The optimal Δ is
reached if further reduction in Δ results in too much loss in
engine efficiency due to Pe < P1. A better approximation about
the optimal Δ can be obtained from (27), i.e.,

Δ∗ =
−1 +

√
1 + 4P 2

1 k1B′/f0

2(k1P1B′/f0)
(30)

where B′ = B/(1 + A).
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Equation (30) or (29) as an approximation establishes one
of the conditions that optimal Ps and Pc must satisfy. It
is established that (P ∗

s − P ∗
c ) determines the optimality and

is only determined by powertrain characteristics. Drive cycle
properties and battery energy depletion target affect P ∗

s and P ∗
c

but not (P ∗
s − P ∗

c ).
Together with (30) and (12), the optimal solutions P ∗

s and P ∗
c

can be completely determined. The main results so far obtained,
as captured in the following, bear significance to general PHEV
applications.

1) P ∗
s − P ∗

c is the optimal minimum power that the engine
outputs in engine-on operations. Since it does not depend
on drive cycle properties and the battery energy depletion
target, in principle, it can be calibrated using basic system
characteristics, and it should be valid for all drive cycles
and all CD targets.

2) P1 as the lowest engine output power with peak efficiency
is of particular importance, and the optimal minimum en-
gine power P ∗

s − P ∗
c is always less than this characteristic

power P1. This property provides a good reference for
calibrating P ∗

s − P ∗
c .

3) Ps or Pc can be calibrated to achieve intended battery de-
pletion targets for intended drive cycles, or can be found
through adaptive controls, whereas Ps − Pc is maintained
at the optimal level P ∗

s − P ∗
c . Conceptually, Pc can be

scheduled, Ps can be determined from (Δ∗ + Pc), and
the observed charge-depleting rate is used to adjust Pc

to achieve the desired charge-depleting target without
compromise in efficiency. Of course, that requires that the
trip lasts longer than relevant time scales.

In real-world driving, the trip distance and energy consump-
tion are not precisely known. Modern vehicular navigation
system may provide trip information to be used by the CD
strategies. Since the proposed strategy requires only the trip
distance and the AER (or battery energy content), it is feasible
to implement this control strategy for real vehicle applications
using the estimated trip information.

III. MODEL SETUP FOR THE POWERTRAIN COMPONENTS

In the following, all the system parameters used to construct
the simulation model are obtained from real-word experiments.
The model characteristics and parameters are described as
follows. For a given set of system characteristics, power distri-
bution characteristics, and net battery energy depletion, a pair
of optimal P ∗

s and P ∗
c that yields minimal fuel consumption can

be solved.

A. Electric Drive System Loss Model Characteristics

The total system power loss of an electric driver system
includes motor, inverter, and battery losses. Fig. 7 shows the
losses of a nominal electric drive system and an improved
electric drive system, which are modeled as a second polyno-
mials of the system mechanical power to describe the minimum
system loss for a given mechanical power output, as if the

Fig. 7. Electric drive system loss models.

TABLE I
ELECTRIC SYSTEM LOSS MODEL

Fig. 8. Output power distribution in UDDS, EPA HW, and US06.

electric machine is coupled with an ideal continuous variable
transmission (CVT) with 100% efficiency and able to operate
at the optimal speed and torque for that mechanical power. The
loss system parameters are shown in Table I, where V0 is the
battery nominal voltage, and R is the nominal dc impedance.

B. Output Power Distribution Model

The distribution of the required output power for a given
drive cycle, as defined in Section II, is used to characterize the
drive cycle. Cycle properties such as total energy consumption,
total drive cycle time, and average power can be obtained
from this distribution function. The distributions of Po from
the nominal vehicle in three common driving-cycle tests such
as United States Dynamometer Driving Schedule (UDDS), the
U.S. Environmental Protection Agency (EPA) Highway (HW),
and US06, are shown in Fig. 8.

For a given total energy, the distribution of Po can be
modeled as a Cauchy distribution or superposition of Cauchy
distribution, limited by the minimum and maximum powers.
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TABLE II
DRIVE CYCLE DETAILS

Fig. 9. Normal and wider distribution in UDDS.

The distribution function is characterized by the peak power,
average power, and the power width at half height, i.e.,

Φ(Po) =
h

1 +
(

Po−Pave

Pw

)2 for Pmin ≤ Po ≤ Pmax (31)

where h is the peak value of Φ(Po), Pave is the average power,
and Pw is the half width of the peak (at a half height).

The vehicle operation time and the total energy Ω in this drive
cycle are given by

T =

Pmax∫
Pmin

Φ(Po)dPo = hPw arctan
(

Po − Pave

Pw

)∣∣∣∣
Po=Pmax

Po=Pmin

(32)

e =

Pmax∫
Pmin

PoΦ(Po)dPo

=

{
hP 2

w

2
ln

[
1 +

(
Po − Pave

Pw

)2
]

+hPwPave arctan
(

Po − Pave

Pw

)}∣∣∣∣
Po=Pmax

Po=Pmin.

(33)

The parameters in Table II are used to model normal and
wider power distributions with the same total energy and time
operation in UDDS and EPA HW drive cycles. Here, “1”
means the normal power distributions, and “2” means the
wider power distributions. More aggressive driving tends to
yield wider power distributions with more occurrence of quick
accelerations and decelerations. The distributions for UDDS
and EPA HW are shown in Figs. 9 and 10, respectively.

Fig. 10. Normal and wider distribution in EPA HW.

Fig. 11. Fuel consumption rate at different engine output powers.

TABLE III
ENGINE FUEL RATE PARAMETERS

C. Engine Model Characteristics

A piecewise linear relationship between fuel consumption
rate and engine output power is considered. Two different
engines having the same peak efficiency, i.e., nominal engine
and improved engine, are modeled in Fig. 11, and the modeling
parameters are listed in Table III. Similar to the idealized elec-
tric machine described in this section, the engine operates as if
it is coupled with an ideal CVT. This simple model intends to
capture essential characteristics such as idle fuel consumption
rate, peak efficiency, and the minimum power to reach the peak
efficiency.
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Fig. 12. Fuel consumption versus engine output power in UDDS1 with zero
battery net energy.

Fig. 13. Fuel consumption versus engine output power in UDDS1 with 4-kWh
battery net energy.

The parameters fo, k, P1, and k1 are marked in Fig. 11 and
will be used for engine piecewise linear model discussion in the
next section.

IV. RESULTS AND DISCUSSION

Minimizing the total fuel consumption in a drive cycle while
maintaining a constant battery net energy leads to optimal
solutions for a given set of system parameters and output power
distribution. This section will discuss the characteristics of the
optimal solutions.

A. General Properties of Optimal Solutions (P ∗
s , P ∗

c ) in
UDDS Driving Cycle

We first look at the charge-sustaining operation of a PHEV.
In other words, the net battery energy consumed in the whole
drive cycle is zero. Fig. 12 shows the dependence of the total
fuel consumption on P ∗

s in cases of UDDS1 drive cycle, with
nominal engine and with different electric losses (baseline
electric drive ES1 and improved electric drive ES3).

In the following, we look at the fuel consumption during
charge-depleting mode. Fig. 13 shows the dependence of the
total fuel consumption on P ∗

s for the previously indicated cases
(ES1 and ES3) during UDDS1 drive cycle in charger depletion

Fig. 14. Optimal P ∗
s , P ∗

c , and P ∗
s − P ∗

c at different net available battery
energies.

Fig. 15. Fuel consumption versus net battery energy for different engines.

mode with a total of 4-kWh battery energy consumed during
the whole drive cycle.

As a result, the total fuel consumption is reduced by using
optimal P ∗

s and P ∗
c . It reduces by around 5% in case of zero net

battery energy and 7% in case of charge-depleting 4-kWh net
battery energy. The higher electric loss model results in higher
fuel consumption. In addition, the higher electric loss model
tends to have a higher sensitivity or curvature at the optimal P ∗

s .
This can be explained by the dependence of the local curvature
on electric loss coefficients A and B.

With the UDDS1 drive cycle, nominal engine, and baseline
electric drive losses, the optimal P ∗

s and P ∗
c at different net

battery energies are shown in Fig. 14. Both optimal P ∗
s and P ∗

c

increase with the increase of net battery energy, yet P ∗
s − P ∗

c

has almost no dependence on the net available battery energy,
as expected. P ∗

s − P ∗
c mainly depends on engine characteristics

and electric loss coefficient B.
With the same drive cycle UDDS1 and electric driving loss

(ES1) parameters, the fuel consumptions for the nominal engine
and the improved engine are shown in Fig. 15. As a result, the
improved engine only improves the fuel consumption slightly,
i.e., by about 2% at the low net battery energy. At the higher
net battery energy, the improvement is minor since the engine
operates at high output power in this situation, and therefore,
the fuel consumption for improved engine is very close to that
for the nominal engine.
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Fig. 16. Optimal P ∗
s and P ∗

s − P ∗
c versus net battery energy for different

engines.

Fig. 17. Optimal P ∗
s and P ∗

s − P ∗
c versus net battery energy for the different

electric losses.

B. Impacts of Vehicle Properties on Optimal Solutions in
UDDS Driving Cycle

The impacts of vehicle system properties on P ∗
s and P ∗

s − P ∗
c

will be discussed next. Here, the vehicle system properties
include electric driving system losses, power distributions, and
engine models. Results will be in turn shown for the following
cases. Fig. 16 shows the effect of engine characteristics on
optimal solutions. As expected from (29), for a system with an
engine of lower P1, (P ∗

s − P ∗
c ) is lower.

As shown in Fig. 17, optimal solutions P ∗
s with low electric

loss (ES3) are higher than baseline (ES1) solutions because
the lower electric loss results in higher electric output power.
In addition, solutions P ∗

s − P ∗
c with ES3 are higher than ES1

solutions since P ∗
s − P ∗

c depends inversely on the electric loss
coefficient B, as shown in (29) and (30).

The effect of the different power distribution models on the
optimal solutions is shown in Fig. 18. It can be seen from this
figure, in the case of wider power distribution UDDS2, that the
optimal P ∗

s is higher than the values for normal distribution,
but the optimal P ∗

s − P ∗
c remains the same. That is because the

optimal P ∗
s − P ∗

c is only influenced by engine properties and
system electric loss models.

C. Sensitivity of Driving Cycles on Optimal Solutions

All the results previously shown are derived in the UDDS
driving cycle. For a given net battery energy, the sensitivity of

Fig. 18. Optimal P ∗
s and P ∗

s − P ∗
c versus net battery energy for the different

power distributions.

Fig. 19. Optimal P ∗
s and P ∗

s − P ∗
c versus net battery energy for UDDS and

HW driving cycles.

different driving cycles (UDDS and highway) on the optimal
solutions is also investigated and shown in Fig. 19.

Fig. 19 provides the optimal solutions for the city (UDDS)
and highway (HW) driving cycles. It is clear that these cycles
represent different driving conditions, such as the large vari-
ation in maximum and minimum power, average speed, and
cycle distance. As a result, significant difference on optimal
solutions P ∗

s would be expected. Optimal solutions are highly
dependent on the drive cycles, but there is no big difference for
optimal P ∗

s − P ∗
c . That is because the optimal P ∗

s − P ∗
c is only

influenced by engine properties and system electric loss models
but not by the details of the driving cycle.

D. Verification of P ∗
s − P ∗

c Approximation

For any power distribution and system property characterized
by this study, the optimal P ∗

s − P ∗
c that minimizes the total fuel

for constant battery energy is given by (30).
The following approximation with reasonable accuracy can

be utilized to obtain the optimal (P ∗
s − P ∗

c ) in the piecewise
linear engine model:

Ps ∗ −Pc∗ ≈ k − keff +
√

(k − keff)2 + 4keffB′fo

2keffB′ (34)
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Fig. 20. Comparison between simulated P ∗
s − P ∗

c and calculated P ∗
s − P ∗

c
using the approximation.

where B′ = B/(1 + A), and k < keff < k1. The parameter keff

is estimated from (16). Fig. 20 shows the comparison between
simulated P ∗

s − P ∗
c and calculated P ∗

s − P ∗
c for all simulation

cases, where the horizontal axis is the simulated P ∗
s − P ∗

c with
the optimal solution, and the vertical axis is the calculated P ∗

s −
P ∗

c approximated from (34).

E. Case for Constant Engine Power

The method developed in this paper can be used to investigate
other control strategies. In the case of constant engine power,
the fuel consumption and battery energy can be expressed in
terms of Ps and Peng, and Pc = Po − Peng.

This strategy is less efficient because of the higher electric
losses due to the nonconstant Pc. Therefore, this strategy is not
explored further.

F. Effectiveness and Validity of the Analytical Solution

To confirm the effectiveness and validity of the proposed
analytical solutions, simulations are carried out for a midsized
Sport Utility Vehicle using PSAT simulation software. Three
different driving cycles are simulated, including UDDS, US06
and CR City Cycle. For the purpose of comparing fuel con-
sumption results with the proposed strategy, the fuel consump-
tion obtained with the default controller in ADVISOR (which
is an electric dominate based strategy [39]) is taken as the
baseline. The net battery energy available is 6 kWh, and the
distance is 37.25 mi for five UDDS cycles, 40.05 mi for five
US06 cycles, and 40 mi for CR City cycle.

For fair comparison, the battery final SOC must be at the
same level, and therefore, SOC correction is necessary. The
linear regression method was used to ensure that the initial and
final SOCs are the same [39]. In this paper, the initial SOC is
100%, and the target SOC is 30%, and therefore, the difference
between the final and target SOCs is considered. Linear fitting
was adopted to obtain fuel consumption and corrected with
SOC.

The power demand, motor torque, and engine torque for the
UDDS driving cycle is shown in Fig. 21. The simulated fuel
consumption results are shown in Table IV. It can be seen that
the proposed strategy improves on average by 8.7%. The fuel
savings shown in Table IV obtained by the proposed strategy

Fig. 21. Simulated vehicle power demand, motor power. and engine power for
the UDDS cycle. (a) Total power demand. (b) Motor power. (c) Engine power.

TABLE IV
TYPICAL DRIVE CYCLE SIMULATION RESULTS

is primarily due to the reduction in electric system losses. As
discussed earlier, the electric system loss increases significantly
as the power increases.
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The error between fuel consumption results from the ana-
lytical solutions directly (see Fig. 15) and the one obtained
from simulation in PSAT by incorporating the proposed control
strategy (Table IV) is generally less than 3.0%. This therefore
confirms the validity of the proposed method and the simplified
models used to derive the solutions.

V. CONCLUSION

This paper has analyzed the minimization of fuel consump-
tion for a parallel ICE–electric powertrain. We have theoreti-
cally derived the optimal power solutions (P ∗

s and P ∗
c ) for the

given characteristics of electric losses, engine fuel consump-
tion rate, and drive cycles. It is found that P ∗

s − P ∗
c is the

controlling factor in minimizing the total fuel consumption for
the given battery energy depletion targets, and that P ∗

s − P ∗
c is

determined solely by powertrain characteristics. The simulation
results show that the fuel economy can be improved definitely
for HEVs and PHEVs with the optimal power solutions, as
this strategy guarantees the optimal solutions for any constant
battery energy depletion and any drive cycles. P ∗

s − P ∗
c is the

optimal minimum power that the engine outputs in engine-on
operations.

Since it does not depend on drive cycle properties and the
battery energy depletion target, in principle, it can be calibrated
for all applications. P1, as the lowest engine output power with
peak efficiency, is of particular importance, and the optimal
minimum engine power P ∗

s − P ∗
c is less than the characteristic

power P1 and approaches P1 for efficient electric drive systems.
This relationship provides a basis for calibrating P ∗

s − P ∗
c .

Since P ∗
s − P ∗

c is largely known and is constant, the optimal
power management strategy problem is replaced with a much
simpler problem, i.e., only Ps or Pc needs to be determined to
achieve the intended battery depletion targets for the intended
drive cycles by means of calibration or adaptive controls, while
P ∗

s − P ∗
c guarantees the most fuel efficient operations regard-

less of charge sustaining or charge depleting.
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