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Abstract: A d.c.-motor-based brake-by-wire system is studied for the purpose of fault
diagnostics of the power electronic switches. The voltage and current generated in the
switching circuit under normal and six faulted conditions are observed. A hierarchical fuzzy
diagnostic system has been developed to detect certain types of fault condition in any specific
solid state power switch at the moment immediately after the occurrence of the fault. The
hierarchical fuzzy diagnostic system has been tested and validated using data from both a
simulation and a laboratory set-up with a 1=3 hp d.c. motor and a d.c.-to-d.c. converter. The

system performance has been compared with two different fuzzy diagnostic systems and the
results are presented. The hierarchical fuzzy diagnostic system trained on the simulated model
has the capability of detecting certain types of fault condition occurring in a brake-by-wire
actuator system set-up in a laboratory in less than 0.0009 s and pinpointing the specific types
of fault within less than 0.013 s.

Keywords: fuzzy logic, multi-class fault detection, brake-by-wire, power electronics, d.c.
motor, d.c.-to-d.c. converter

1 INTRODUCTION

The automotive industry has given increased atten-

tion towards the replacement of mechanical and

hydraulic systems in vehicles using either fully or

partially electrical systems. In addition to the main

propulsion, work has progressed towards the repla-

cement of various auxiliary devices, which are

currently operated using mechanical, hydraulic, or

pneumatic methods. These devices include steering,

brakes, suspension, and various mechanical pumps.

The mechanical systems are relatively heavy and

difficult to package. On the other hand, electrical

systems are easier to package since the wiring is

flexible. Electrical systems use motors and solenoids

as actuators and have a fast response. However, if

the motor system fails, the entire electrical system

related to the motor ceases to function properly. A

motor system consists of a battery, wiring, power

electronics, an embedded controller, and the motor

itself.

This paper presents the research on fault diagnos-

tics in brake-by-wire actuator systems. Brake-by-wire

systems and other X-by-wire systems with fully

electromechanical devices or partial mechanical

backup systems have been studied by various

researchers [1–12]. Some of these studies discussed

have the behaviour of the brake in the context of

the whole vehicle and how the brake system

behaviour influences the overall vehicle perfor-

mance. Others have discussed electrohydraulic

systems including slip control, precise computation

of the brake force, and traction control. However, in

the literature, research work on fault diagnostics in

the motor and its controller in brake-by-wire systems

has not been reported in depth. Fault diagnostics

technology for internal combustion engine vehicles

has been well investigated [13–15], but much less so

in electrical system diagnostics. Moseler and Iser-

mann [12] described a black-box-type model using

a polynomial differential-algebraic equation with
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application to a brushless d.c. machine. There these

workers estimated system parameters under normal

and faulted conditions and compared the same with

the current system parameter values; if any discre-

pancy with the normal condition was seen, a faulty

condition was declared. However, the parameter-

estimated model can easily lose the intuitive focus of

the system and in general cannot point towards the

specific problem and its location. In addition, the

model can encounter a topological change after a

fault, and hence the premises on which the model

was originally developed and the parameters esti-

mated may not hold any longer.

This paper is focused on the diagnostics of power

electronics switches since they are often considered

to be the weakest link in the brake-by-wire system,

i.e. in the whole link from the brake pedal to the

brake shoe actuator. The objective is to locate

accurately any faults within the power electronics

of a brake-by-wire system as soon as they occur. A

brake-by-wire actuator system model was developed

using Simplorer software that implements the full

control of the power electronics switches and

emulates six different fault conditions. A test bench

was designed for the actuator system. The simulated

model and the bench tests are compared under

normal and fault conditions. A hierarchical fuzzy

diagnostic system has been developed and trained to

detect all specified fault conditions in the actuator

system. The hierarchical fuzzy diagnostic system

is designed on the basis of the structure of the

brake-by-wire actuator system. It has the capabilities

of detecting fault conditions almost immediately

after they occur and pinpointing specific fault

conditions within less than 0.02 s on the bench set-

up. The performance of the hierarchical fuzzy

diagnostic system is also compared with two other

fuzzy diagnostic systems, and the results are pre-

sented in the paper.

2 A THEORETICAL MODEL OF THE BRAKE-BY-
WIRE ACTUATOR SYSTEM

Figure 1 illustrates a quarter-model of the

system architecture of a fully electro-mechanical

brake-by-wire system. Although many types of

motor can be used for the brake-by-wire system, a

brushed d.c. motor is selected because it is inexpen-

sive and is available in the automotive industry

abundantly. The characteristics of a brushless motor,

for example, can be represented using equations

similar to a brushed d.c. motor, and the failure

mechanisms are very similar to each other. Further-

more, in the configuration described, the power

electronics system can be implemented using a four-

switch bridge, unlike the six-switch bridge for a

three-phase system. This factor also adds to the cost

benefit, which is one of the most important concerns

in the automotive industry. The brushed d.c. motor in

this study either can be permanent magnet-based or

can have a field winding. The system has four

actuator motors corresponding to each wheel. The

position signal from the brake pedal is fed to a

controller which generates a control signal to activate

one or more of the four brake motors. Each motor

may have a separate control wire from the controller

to allow the four actuators to run independently,

which is more robust during a failure of one or more

of the actuators. Each motor has its own power

electronics converter which receives control com-

mand from the main controller and controls each

motor separately. This helps to increase the robust-

ness during a failure of one or more of the actuators as

the remaining actuators will still function.

The simulation model for the brake-by-wire system

is illustrated in Fig. 1(a). The block diagram of the

simulated system is shown in Fig. 1(b). The input to

the system is the pedal position and pedal speed,

which are transformed to Tref, the reference torque.

Fig. 1 Brake-by-wire system: (a) architecture of a brake-by-wire system; (b) the system diagram
for a brake-by-wire system
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The electromechanical system can be described

through the equations

Va~RaIazLa
dIa

dt
zK Wv ð1Þ

T~K WIa ð2Þ

T~J
dv

dt
zBvzTL ð3Þ

where Va is the armature voltage, Ia is the armature

current, Ra is the armature resistance, La is the

armature leakage inductance, K is the motor con-

stant, W is the total flux per pole, v is the angular

speed of the motor, T is the output torque of the

motor, J is the inertia of the actuator system which

includes the motor rotor, and the loads connected to

the driving shaft, B is the damping, and TL is the load

torque (braking force).

The motor voltage can be derived from the brake

pedal position and pedal force. If the pedal force (or

corresponding torque) is Tref, then it can be shown

that the required motor voltage in Fig. 1(b) is given

by

V �a ~Ra
Tref

K W
z

La

K W

dTref

dt
zK Wv ð4Þ

The power electronics circuit to actuate the motor

is illustrated in Fig. 2. Based on equation (4), a

reference voltage is obtained from the d.c. battery

through pulse width modulation (PWM) techniques.

In Fig. 2, the motor voltage is

V �a ~ 2D{1ð ÞVB ð5Þ

where D is the switching duty ratio of switch A and

VB is the battery voltage.

3 SIMULATION STUDIES OF FAULTY
CONDITIONS OF BRAKE-BY-WIRE SYSTEMS

The system model shown in Fig. 1(b) is implemen-

ted by using Simplorer-based simulation which can

simulate various fault conditions of the four-switch

scheme shown in Fig. 2. Figure 3 shows the simu-

lated current and voltage waveforms under normal

and different faulty conditions. The ratings and

parameters of the test motor are shown in Table 1.

It should be noted that the particular motor used

was a higher-voltage motor, rather than a motor that

would normally be encountered in an automotive

environment. This is due to the limitation of

available resources. Nevertheless, the principles are

well illustrated. In these simulations, the duty ratio

of switch A is set to 70 per cent.

It is worth noting that, at 70 per cent duty ratio,

the open-circuit fault caused by a broken switch in

B and/or A9 cannot be detected, which can be

explained by following the current paths through the

switches and the diodes. In order to detect the open-

circuit fault condition caused by B and A9, a duty

ratio of less than 50 per cent must be applied. In

other words, as soon as a duty ratio of less than 50

per cent is applied, the fault signal can be captured.

It is also worth pointing out that the fault

conditions have symmetrical characteristics due to

the symmetry of the power electronics circuit. For

example, in Fig. 2, switch A with an open-circuit

fault will result in the same behaviour as B9 with an

open-circuit fault; similarly, B with an open-circuit

fault will result in the same behaviour as A9 with an

open-circuit fault. In summary, at any given time,

one of the six fault classes can occur in the circuit

shown in Fig. 2. They are denoted hereafter as

follows: A or B9 open; A9 or B open; AA9 or BB9 open;

A or B9 short; A9 or B short; AA9 or BB9 short.

A bench set-up was implemented consisting of a

permanent magnet-brushed d.c. motor, a full bridge

converter, and a dSPACE controller as shown in Fig. 4.

The bench set-up system has the capabilities to

generate current and voltage signals under normal

operating conditions as well as various fault conditions.

The signals generated by the bench set-up and the

simulation model have similar behaviours. In the bench

set-up, the d.c. motor serves as the brake-by-wire

actuator, and the a.c. motor serves as the brake and is

programmed to emulate a car brake system.
Fig. 2 The inverter circuit diagram for the

brake-by-wire system
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For the laboratory set-up experiments, the open-

circuit faults were emulated by simulating any one

or more of the switches open. The parameters

(Table 1) of the motor tested are the same as those

used in the simulation. The faults being tested

include the following: A or B9 open; B or A9 open;

both A and B9 open; both B and A9 open. Figure 5

gives an example of the signals generated by the

simulation program and the laboratory set-up test

when the circuit has a fault caused by switch A open

circuited. In the experiments, the sampling of data

has a limited rate. Therefore, only the average is

sampled whereas, in the simulation, the data can be

sampled at a very high rate to show the detailed

switching behaviour. For ease of comparison, the

simulation data have to be processed. For this

comparison, the simulated data were processed

using a 1000-point moving average. It can be seem

that the test data match the simulation very well.

4 A HIERARCHICAL FUZZY DIAGNOSTIC
SYSTEM FOR FAULT DETECTION IN A BRAKE-
BY-WIRE SYSTEM

As was shown in the previous section, the fault

conditions are manifest in three output signals, i.e.

motor current, power supply current, and motor

voltages, denoted as Imot, Ibat, and Vmot respectively.

Fault diagnostics in the brake-by-wire system are

performed by an intelligent system that has the

Table 1 Parameters of the motor used in the simu-
lation and experiment set-up

Rated voltage 125 V
Rated current 3.2 A
Rated power 1=3 hp
Rated speed 1800 r/min
Armature resistance Ra 8.98 V
Armature leakage inductance 5.35 mH
Machine constant KW 0.45 V s/rad
Inertia 0.661023 kg m2

Fig. 3 Simulated voltage and current waveforms under normal and fault conditions
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capability of detecting six different classes of fault

as soon as they occur. Figure 6 illustrates the major

computational blocks involved in the proposed fuzzy

brake-by-wire fault diagnostic system, which con-

sists of two stages: offline training and online

diagnostics. During the training stage, a set of

training data is generated by a simulation

programme, a laboratory set-up, or physical data

from a brake-by-wire device. The training dataset

should contain three signals, I i
mot t0, te½ �, I i

bat t0, te½ �,
V i

mot t0, te½ �, generated under the scenario of ith fault

condition, for i 5 1, …, k, where k is the number of

fault conditions to be detected. The time interval [t0, te]

represents the simulation time used to generate the

signals.

Based on the brake-by-wire system presented in

Fig. 1 and the simulation model described in section

3, a fault diagnostic system has been designed to

detect the following six fault classes as soon as they

occur in the system.

Class 1. Switch A or switch B9 is open.

Class 2. Switch B or switch A9 is open.

Class 3. Both switch A and switch A9 are open.

Class 4. Switch A or switch B9 is short.

Class 5. Switch A9 or switch B is short.

Class 6. Both switch A and switch A9 are short

circuited or both switch B and switch B9

are short.

The first computational step is to segment the

signals of the ith fault class into a set of segments,

S_Ii, and to extract the signal features from each

segment in S_Ii, for i 5 1, …, k. All feature vectors

extracted from signal segments form a training data

set which is used by a fuzzy learning algorithm to

generate a fuzzy knowledge base that consists of

fuzzy rules and fuzzy membership functions. At the

online diagnostic stage, at any given time t, the

condition of the brake-by-wire system is detected on

the basis of the behaviours of the three signals,

Imot[t2Dt, t], Ibat[t2Dt, t], Vmot[t2Dt, t] within the

time interval [t2Dt, t]. The feature vectors are

extracted from these three signal segments and the

results are sent to the fuzzy brake-by-wire diagnostic

system, which in turn determines whether the

system is under the normal operation condition, or

under one of the six fault conditions. The

following two sections 4.1 and 4.2 describe the two

Fig. 4 Schematic diagram of the test bench set-up

Fig. 5 Comparison of the simulated and experimental motor currents, power supply currents,
and motor voltages in a fault condition (switch A open). The relatively smooth curves with
sharp step changes in command can be noted in the simulated results
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major computational components in the fuzzy

brake-by-wire fault diagnostic system, signal seg-

mentation and feature selection, and a hierarchical

fuzzy multi-class diagnostic system.

4.1 Signal segmentation and feature extraction

Under each fault condition i, the three signals

I i
mot 0, te½ �, I i

bat 0, te½ �, and V i
mot 0, te½ �, i 5 1, …, 6, are

first segmented into three sequences of segment

denoted as S I i
mot, S I i

bat, and S V i
mot, where

S Ii
mot~ S I i

mot j{1ð Þ Dt,j Dt½ �
�� j~1, . . . ,n,and n Dt~te

� �
ð6Þ

S Ii
bat~ S I i

bat j{1ð Þ Dt, j Dt½ �
�� j~1, . . . ,n,and n Dt~te

� �
ð7Þ

S V i
mot~ S V i

mot j{1ð Þ Dt, j Dt½ �
�� j~1, . . . ,n,and n Dt~te

� �
ð8Þ

S_Ii denote all the segments generated from

I i
mot 0, te½ �, I i

bat 0, te½ �, and V i
mot 0, te½ �, i.e.

S Ii~ S Ii
mot, S Ii

bat, S V i
mot

� �
.

Since the three signals are acquired simulta-

neously, they are segmented into three sequences

that consist of the same number of fixed sized

segments. In every sequence, the two adjacent

segments are overlapped by one third of each

segment in order to maintain continuity of informa-

tion flow between segments. The details of the

segmentation scheme are omitted here for brevity.

Each segment is represented by three features:

minimum, maximum, and average values within

the segment. At time interval [( j 2 1) Dt, j Dt], a

feature vector is defined as

FVi
j~Smin ai

j,max ai
j,ave ai

j,min bi
j,max bi

j,ave bi
j,

min V i
j ,max V i

j ,ave V i
j T

where ai
j, bi

j, and V i
j are the jth segments of I i

mot, I i
bat,

and V i
mot respectively, generated by simulating the ith

fault class. The output from the feature extraction

block at the training stage is a set of feature vectors

FVi defined as follows: FVi~ FVi
j

���j~1, . . . , n
n o

. The

training data used by the fuzzy learning program

contain all the feature vectors in FVi for all i 5 1, …., k.

At the online diagnostic stage, fault detection is

based on the three signals acquired within the time

interval [t2Dt, t]. From the three signal segments

Imot[t2Dt, t], Ibat[t2Dt, t], and Vmot[t2Dt, t], a feature

vector FV[t] is extracted, where

FV t½ �~ min a tð Þ,max a tð Þ,ave a tð Þ,min b tð Þ,f
max b tð Þ,ave b tð Þ,min V tð Þ,max V tð Þ,

ave V tð Þg

The fuzzy brake-by-wire fault diagnostic system will

use the fuzzy knowledge bases generated at the

training stage to derive the diagnostic decision, with

the brake-by-wire system in the normal condition or

one of the six faulty conditions.

4.2 A hierarchical fuzzy diagnostic system for
brake-by-wire fault detection

Fuzzy logic has been popular in engineering fault

diagnostics [16–20]. However, there has not been

Fig. 6 Computational steps in a fuzzy brake-by-wire (B-B-W) fault diagnostic system: (a) offline
training stage; (b) online fault diagnostic stage

(6)

(7)

(8)
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much discussion in the literature on different fuzzy

system architectures for multi-class fault detection.

There are a number of approaches that can be used to

model a fuzzy multi-class classification problem. This

paper presented a hierarchical fuzzy diagnostic

system F designed on the basis of the brake-by-wire

system structure. Figure 7 illustrates the diagnostic

stage of F. F has six fault diagnostic systems Fi for

i 5 1, 2, …, 6. F1 is designed to detect normal

conditions from abnormal conditions. When F1

decides that the current condition of the brake-by-

wire system is normal, F immediately exits to process

the next signal segment. Since most of the time a

brake-by-wire system is in the normal condition, this

system architecture ensures fast detection. When F1

detects an abnormal condition, it activates F2, which

is designed to detect whether the brake-by-wire

system is in the short-circuit or open-circuit condi-

tion. If it is in the short-circuit condition, then F3 is

activated, which decides whether the brake-by-wire

system is single-switch or double-switch short

circuited. If it is single-switch short circuited, F5 is

called to find out whether A or B9 is short circuited, or

whether A9 or B is short circuited. If F2 decides that the

brake-by-wire system is in an open-circuit fault, F4

is called to find out whether the brake-by-wire system

is single-switch or double-switch open circuited. If it is

single-switch open circuited, F6 is called to find out

whether A or B9 is open circuited, or A9 or B is open

circuited.

Fuzzy reasoning is performed within the context of a

fuzzy system model, which consists of the control, the

solution variables, the fuzzy sets, the proposition (rule)

statements, and the underlying control mechanisms

that tie all these together into a cohesive reasoning

environment. All six fuzzy diagnostic systems in F

share the same input space, a nine-dimensional

feature space as described in the last section. There-

fore each fuzzy system has nine control variables

FV~ Imin
mot , Imax

mot , Iave
mot, Imin

bat , Imax
bat , Iave

bat , V min
mot ,V max

mot , V ave
mot

� �
and one solution variable y to indicate whether the

input vector FV is likely to be in class 0 or class 1. The

fuzzy learning algorithm presented in reference [20] is

used to generate a fuzzy knowledge base for each fuzzy

system based on the data generated by the simulation

model presented in the last section.

5 EXPERIMENTS AND SYSTEM EVALUATION

The simulation model described in the last section

was used to generate training and testing data. The

simulation system has the following simulation

parameters: d.c. motor with Vd.c. 5 100 V, Ra 5 8.98 V,

La 5 0.005 35 H, initial speed of (650/60)626p rad/s,

and a frictional torque of 0.1 N m. The inverter’s

parameters were set to a PWM frequency of 5 kHz.

Three signals, namely the battery current Ibat, the

motor current Imot, and the motor voltage Vmot, are

measured for all six fault classes presented above.

Each fault event was triggered at the end of the first

second, and the entire simulation takes 2 s.

The training data are collected and segmented as

follows. For every fault class, the fault part of the

Fig. 7 A hierarchical fuzzy diagnostic system for fault detection in a brake-by-wire system
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signals has a duration of 15 ms, i.e. 15 000 data

samples were generated at a 1 ms sampling rate. All

three signals Imot, Ibat, and Vmot for each fault class,

are segmented simultaneously into segments of 60

samples in each, with an overlap of 20 samples

between two adjacent segments. The fault portion of

the signals was segmented into 378 segments.

A feature vector is extracted from three signal

segments Imot, Ibat, and Vmot that occur at the same

time interval as described in the last section. All

those feature vectors are divided into seven datasets,

C0, C1, …, C6, where C0 contains the feature vectors

extracted from the normal signal segments, and C1,

…, C6 contain the feature vectors representing the

respective fault classes. Each Ci is divided randomly

into a training and a test set in a ratio of 2:1.

For the purpose of evaluating the structured

hierarchical fuzzy diagnostic system, two additional

fuzzy diagnostic systems were developed to model

with a fault-against-normal scheme. Figures 8(a)

and (b) illustrate the architectures of these two

systems. The single seven-class fuzzy classification

system has the same nine control variables as the

structured fuzzy diagnostic system, and it has one

output variable that has seven terms representing

the normal class and the six fault classes.

The fuzzy diagnostic system shown in Fig. 8(b) is a

set of six independently trained fuzzy diagnostic

systems, each of which was trained by one fault class

against the normal class. The decision module,

winner takes all (WTA), selects the output class that

has the highest fuzzy belief value.

Tables 2 to 5 show the performances of these three

fuzzy diagnostic systems on the test dataset. Table 2

shows that the single fuzzy system (see Fig. 8(a)) for

the seven-class fault diagnostic system completely

missed the fault class A9 or B open. Table 3 lists the

detailed performances of the six individual fuzzy

diagnostic systems used in the fault versus normal

scheme (see Fig. 8(b)), and Table 4 lists the entire

system performance after a WTA scheme (see

Fig. 8(b)) is applied to the outputs from the six fuzzy

diagnostic systems. The fault class A or B9 open has a

rather low detection rate. The performances of all

the six fuzzy diagnostic systems in the hierarchical

fuzzy diagnostic system illustrated in Fig. 7 are listed

in Table 5. All six individual fuzzy diagnostic systems

Fig. 8 Two fuzzy diagnostic systems: (a) a single seven-class fuzzy fault classification system;
(b) a fuzzy diagnostic system modelled using a fault-against-normal scheme

Table 2 Diagnostic performances of the single fuzzy
classification system illustrated in Fig. 8(a)

Case Correct rate

Normal 100
A or B9 open 96.78
A9 or B open 0
AA9 or BB9 open 100
A or B9 short 100
A9 or B short 100
AA9 or BB9 short 100
Total 84.27
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performed well. Table 6 lists the performance of the

hierarchical fuzzy diagnostic system (see Fig. 7) on

all classes. It gave 100 per cent detection on the

normal class and three fault classes, and more than

99 per cent on the other three fault classes.

In order to evaluate the robustness of the

proposed diagnostic method, a set of experiments

was conducted using the data acquired through the

laboratory test set-up described in the last section.

Because of the sampling rate limitation of the data

acquisition system, the data were sampled at about

every 10 ms and only three fault classes were

generated: class 1, A or B9 open; class 2, A9 or B

open; class 3, AA9 or BB9 open. The three fuzzy

systems are as follows: F1 is trained to detect normal

versus abnormal; F2 is trained to identify whether

the current fault is {A or B9 open, A9 or B open} or AA9

or BB9 open; F3 is trained to identify whether the

current fault is {A or B9} open, or {A9 or B} open. All

three systems are trained on simulation data and

tested on the laboratory-generated data.

Since the motor voltage signal from laboratory

data is asynchronous and has a sampling rate that is

different from the motor current and the battery

current, the three signals cannot be mixed in system

training. Therefore only the battery current Ibat and

the motor current Imot are used in the system test on

the laboratory data.

When the hierarchy fuzzy diagnostic system,

which is trained on the simulation data described

earlier, is tested on the laboratory-generated data, it

detected 100 per cent correctly for normal condi-

tions and 100 per cent correctly for fault conditions

as soon as they occurred. However, the identification

of the type of fault condition took a few segments

after the fault condition occured. Class 1, A or B9

open, was identified correctly at the fifth segment

after the fault condition occurred; class 2, A9 or B

open, was identified immediately as a class 2 fault as

soon as it occurred; class 3, AA9 or BB9 open, was

identified correctly at the fourteenth segment after

the fault condition occurred. The hierarchical fuzzy

diagnostic system takes about 0.0009 s to make a

diagnostic decision for a given signal segment on a

personal computer (PC) with the Windows XP

system and a PM 1.73 processor. Any abnormal

conditions are detected within 0.0009 s after they

occur. For the fault class identity, class 2 is

immediately identified, which takes 0.0009 s; class

1 is identified in 0.0045 s, and class 2 is identified in

Table 3 The performances of six fuzzy diagnostics modelled using the fault versus normal scheme in the system
illustrated in Fig. 8(b)

Fault
type

Normal class correct rate
(%)

Fault class correct rate
(%)

Overall correct rate
(%)

F1: normal versus A or B9 open 100 100 100
F2: normal versus A9 or B open 100 100 100
F3: normal versus AA9 or BB9 open 100 98.51 99.21
F4: normal versus A or B9 short 100 95.07 97.22
F5: normal versus A9 or B short 100 100 100
F6: normal versus AA9 or BB9 short 100 100 100

Table 5 The performances of the six fuzzy diagnostics used in the hierarchical fault diagnostic system illustrated in
Fig. 7

Fault
type

Class 0 correct rate
(%)

Class 1 correct rate
(%)

Overall correct rate
(%)

F1: class 0: normal versus class 1 abnormal 100 100 100
F2: class 0: open versus class 1: short 100 100 100
F3: class 0: single-switch short versus class 1:

double-switch short
100 98.51 99.21

F4: class 0: single-switch open versus class 1:
double-switch open

99.25 99.25 99.25

F5: class 0: A or B9 short versus class 1: A9 or B short 100 100 100
F6: class 0: A or B9 short versus class 1: A9 or B short 100 99.30 100

Table 4 The system performance of the fuzzy fault
versus normal combined with a WTA deci-
sion (see Fig. 8(b))

Case
Correct rate
(%)

Normal 100
A or B9 open 85.48
A9 or B open 100
AA9 or BB9 open 95.52
A or B9 short 95.07
A9 or B short 100
AA9 or BB9 short 100
Total 96.44
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0.0126 s. The detection time was measured accord-

ing to the time needed to detect the faults after they

occured by the proposed hierarchical fuzzy diag-

nostic system running on a PC with the Windows XP

system and PM 1.73 processor.

These results show that the proposed hierarchical

fuzzy diagnostic system trained on the basis of a

simulated brake-by-wire model has the capability of

correctly identifying all fault conditions in real time

over a wide operating domain.

6 DISCUSSION AND CONCLUSIONS

This paper presented an analytical model of the

brake-by-wire system using an electromechanical

actuator and implemented a simulation of the same

using the Simplorer software by Ansoft. A bench set-up

was also developed for the brake-by-wire system. A

d.c. motor was used as an actuator, since it is more

abundantly available with the present automotive

supplier base. A very simple system was used, since

cost-effectiveness is of prime concern in the

automotive industry. However, the methodology

illustrated is easily extendable to other kinds of

motor and the principles discussed here still remain

valid. Both the simulated and the bench test

systems have the capabilities of generating current

and voltage signals under normal operating condi-

tions and fault conditions. An innovative hierarch-

ical fuzzy diagnostic system has been developed on

the basis of the structure of a brake-by-wire system

to perform fault diagnostics. The hierarchical fuzzy

diagnostic system gives 99.68 per cent classification

accuracy on all signal segments generated by the

simulation model. While tested on the data gener-

ated by the brake-by-wire system in a bench set-up,

the hierarchical fuzzy diagnostic system has the

capability of detecting any of the specified fault

conditions in less than 0.0009 s and pinpointing to

the specific types of fault within less than 0.013 s.

This indicates that the proposed hierarchical

fuzzy diagnostic system has the promise of being

implemented easily in a real-time environment in

the automobile and operating robustly in a wide

range of conditions. Although a brake-by-wire

system was used with application in the automotive

environment in mind, the methodology is equally

applicable to other systems where such motors are

used, including manufacturing and other non-

mobile platforms. These will be studied and

reported by the present authors in future work.
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