
Hybrid vehicle design using global optimisation
algorithms

Wenzhong Gao

Department of Electrical and Computer Engineering,
Center for Energy Systems Research,
Tennessee Technological University, 1020 Stadium Dr, PH414,
Box 5032, Cookeville, TN 38505, USA
E-mail: wgao@tntech.edu

Chris Mi*

Department of Electrical and Computer Engineering,
University of Michigan, 4901 Evergreen Road, Dearborn,
MI 48128 USA
Fax: 313-583-6336 E-mail: mi@ieee.org
*Corresponding author

Abstract: Four global optimisation algorithms are applied in the design
optimisation of a hybrid electric vehicle (HEV). These four algorithms are:
DIRECT, Simulated Annealing, Genetic Algorithm, and Particle Swarm
Optimisation. The optimisation objective is to achieve maximum fuel
economy, subject to the constraints of vehicle performance. The model in
the loop methodology is adopted for our design process, in which a vehicle
model named PSAT is used as the analysis tool. The design optimisation
results and the performance of the four optimisation algorithms are
compared. Our initial study shows that DIRECT and Simulated Annealing
algorithms are efficient for the complex HEV engineering design problem.
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1 Introduction

Due to environmental and energy concerns, the hybrid electric vehicle (HEV) is
becoming an important research topic. Its heart lies at an innovative hybrid
powertrain, whose parameters must be tuned for a better performance of the hybrid
vehicle (Moore, 1996). A hybrid powertrain is comprised of electric motors with
power electronic converters, energy storage devices such as batteries and
ultracapacitors, and sophisticated controllers, in addition to such classical
components as internal combustion engines, transmissions, clutch, drive shafts,
differentials, etc. Therefore, a hybrid powertrain is much more complicated than a
conventional powertrain. The component sizing and system prototyping of a hybrid
powertrain is difficult because of the many design options and the rapidly developing
technologies in the automotive industries (Miller, 2003). The cost and performance of
the designed hybrid powertrain are determined by the chosen configuration and
hundreds of design variables and parameters. Engineering design optimisation can
refine a rough design so as to maximise fuel economy and minimise emission, weight
and cost. In the meantime, vehicle performance requirements must be satisfied
(Fellini et al., 1999; Gao and Porandla, 2005).

There are a variety of optimisation algorithms available. They can be categorised
in different ways; for example, local optimisation algorithm versus global
optimisation algorithm or deterministic optimisation algorithm versus stochastic
optimisation algorithm or gradient-based algorithm versus derivative-free algorithm.
A good selection of optimisation algorithms for the application of hybrid powertrain
design is not very obvious. In this paper, four optimisation algorithms are
thoroughly investigated in the design optimisation of an example parallel hybrid
electric vehicle. Since the analytical expression of the objective function does not
exist, a vehicle simulation model is used for function evaluations.

This paper explores the feasibility of different global optimisation algorithms by
comparing their performance and accuracy. The rest of the paper is organised as
follows: Section 2 reviews the principles and procedures of four global optimisation
algorithms. Section 3 presents the methodology of the model-in-the-loop design
process used for this study. In Section 4, the constrained HEV design optimisation
problem is set up. Section 5 provides the HEV design optimisation results from the
different algorithms and the associated comparison. Finally, conclusions and
discussions are given in Section 6.
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2 Global optimisation algorithms for HEV design

The response function of a parallel HEV is multi-modal (involving many local
minima), and sometimes noisy and discontinuous (Fellini et al., 1999). Gradient
based algorithms such as sequential quadratic programming (SQP) (Schittkowski,
1985) use the derivative information to find the local minima. The major
disadvantage of local optimisers is that they do not search the entire design space
and cannot find the global minimum. Derivative-free algorithms such as DIRECT
(Jones, 2001; Jones et al., 1993), simulated annealing (SA) (Kirkpatrick et al., 1983),
genetic algorithm (GA) (Holland, 1975), and particle swarm optimisation (PSO)
(Kennedy and Eberhart, 1995; Trelea, 2003) do not rely on the derivatives and can,
therefore, work exceptionally well when the objective function is noisy and
discontinuous. Derivative-free methods are often the best global algorithms
because they must often sample a large portion of the design space to be
successful. A comparison of the gradient-based and the derivative-free algorithms
for the optimisation of a hybrid electric vehicle is given in Fellini et al. (1999) and
Wipke and Markel (2001). Note here that even though DIRECT, SA, GA, and PSO
algorithms search the design space globally, the main difference is that DIRECT is a
deterministic algorithm, whereas SA, GA, and PSO are stochastic algorithms.

2.1 DIRECT Algorithm

DIRECT (DIvided RECTangles) is a sampling algorithm, developed by Donald R.
Jones (2001). This global optimisation algorithm is a modification of the standard
Lipschitzian approach that eliminates the need to specify the Lipschitz constant
(Jones et al., 1993). The Lipschitz constant is a weighing parameter, which decides the
emphasis on the global and the local search (Jones et al., 1993). The use of the Lipschitz
constant is eliminated in Jones (2001) by searching all possible values for the Lipschitz
constant, thus putting a balanced emphasis on both the global and the local search.

The algorithm begins by scaling the design box to an n-dimensional unit hypercube.
DIRECT initiates its search by evaluating the objective function at the centre point
of the hypercube. DIRECT then divides the potentially optimal hyper-rectangles by
sampling the longest coordinate directions of the hyper-rectangle. The sampling is
done such that each sampled point becomes the centre of its own n-dimensional
rectangle or box. This division continues until termination (pre-specified iteration
limit is reached) or convergence is achieved. The division of rectangles in the first
three iterations of a two dimensional problem is illustrated in Figure 1, where d
represents the centre to vertex distance and each centre point is labelled with a
numeral for identifying the rectangles.

In the first iteration, the unit hypercube is trisected into three rectangles. The
objective function value is evaluated at the centre points of the three resulted
rectangles. The objective function values are plotted against the centre ± vertex
distance as shown in Figure 2(a). Then the rectangle with the least objective value in
each column of dots, which represent the design points, is selected as the optimal
rectangle. In the first iteration there is only one column of dots; therefore rectangle 1
is selected as the optimal rectangle and trisected in the second iteration. Similarly in
the second iteration, rectangles 4 and 2 have the least objective function values, as
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shown in Figure2(b). These two rectangles are selected as potential optimal
rectangles and trisected in the third iteration. This process is continued until the
maximum number of function evaluations is exhausted.

Figure 1 The first three iterations of the DIRECT algorithm

Figure 2 Rectangles selected by DIRECT for further subdivision

2.2 Simulated Annealing

Simulated Annealing belongs to the class of stochastic algorithms, which means that
they follow a random path in every searching process for global optimum. A
simulated annealing algorithm, based on the Metropolis Monte Carlo Simulation
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proposed by Kirkpatrick et al. (1983) is used for this study. As the name suggests,
this algorithm is based on the analogy of the annealing process of metals. When
metals are at a high temperature, the atoms can move relatively freely, but as the
temperature is decreased slowly, the atoms can move freely enough to begin adopting
the most stable orientation, by taking the lowest possible energy state. Attaining the
lowest possible state can be thought of as reaching the global minimum in the
optimisation process.

The algorithm starts by evaluating the objective function at a random design
point. From this design point, the algorithm jumps to a new random design point
and evaluates the objective function value and feasibility. If the current point is better
than the previous point, then the current point is accepted to be the potentially
optimal point and if the current point is worse than the previous point then its
acceptance or rejection depends on the Metropolis probability P criterion given
below:

P� f;T� � e
fnewÿfcurrent

T� �; �1�
where f is the objective function value of the optimisation problem and T is the
temperature.

From the above equation, it can be seen that the new point is more likely to be
accepted, if the new design point function value is close to the current design point
function value. And also, the probability of acceptance is more when the temperature
is high. Note here that the system design may move to the new design point even
when it is worse (has a higher function value) than the current one. It is this feature
that prevents the method from becoming stuck in a local minimum. This shows that
the simulated annealing algorithm does a global search initially when the
temperature is high where even worse design points are more likely to be accepted,
and switches to local search when the temperature is decreased, where worse design
points are less likely to be selected. Thus, the switching from the global search to the
local search depends on the value of the temperature. Another parameter which is
responsible for the switching from the global to local search is the maximum step
size. This process of selection is continued as the temperature is decreased by a
certain factor until the pre-specified number of iterations or the convergence criteria
are met.

2.3 Genetic Algorithm

Genetic Algorithms (Holland, 1975) are based on evolutionary processes and
Darwin's theory of natural selection. In this selection, only the fittest populations
survive, while the less fit populations are tossed out. During the process, several
natural processes like crossover, mutation and natural selection are used for selecting
the best-fit population. The same concept is extended to mathematical optimisation
problems, where only good design points are selected, while less suitable design
points are neglected. In this context, the objective function is usually referred to as a
fitness function, and the process of `survival of the fittest' implies a minimisation (or
maximisation) procedure. GAs begin by randomly generating, or seeding, an initial
population of candidate solutions. Starting with the initial random population, GA
then applies a sequence of operations like the design crossover where two individuals
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from the initial population (parents) are reproduced to get two new individuals
(children) and mutation where one individual from the initial population is slightly
changed to get a new individual. Then the worst designs are weeded out from the
population in order to improve the fitness function. The entire process outlined
above can be termed as one generation and is continued for several generations to
further improve the fitness function. This process is continued until some termination
criteria are satisfied or for a pre-specified number of generations.

2.4 PSO

Particle Swarm Optimisation (PSO) is an evolution-based stochastic global
optimisation technique developed by Kennedy and Eberhart (1995) (Trelea, 2003).
PSO is based on the swarm intelligence found in natural systems. Such systems are
typically made up of a population (swarm) of simple agents or particles interacting
locally with one another and with their environment. Bird flocking, ant colonies, and
animal herding. are a few examples of such natural systems. In these systems, the
local interactions between the agents such as changing the position and velocity lead
to the global behaviour. The same technique can be applied in the optimisation
problems to find global minima (or maxima).

PSO starts by initialising random design points, called particles, in the
multi-dimensional design space. In a PSO system, each particle flies in the
multi-dimensional design space looking for the global optimum. Each particle in the
PSO is defined by a point in the design space called position and its flight speed called
velocity. In addition, each particle is aware of its best position reached so far (pbest)
and the best position of the group so far (gbest). During flight, each particle adjusts
its position according to its own experience (pbest value), and according to the
experience of its neighbouring particles (gbest value). The position is modified using
the concept of velocity. The velocity of each particle is updated as follows:

vn�1i � kvni � �1rand1 pbesti ÿ pni
ÿ �� �2rand2 gbestÿ pni

ÿ �
; �2�

where vn�1i is the velocity of the particle i at iteration �n� 1�; k is the weighing
function; �1 and �2 are the weighing factors; rand1 and rand2 are two random
numbers between 0 and 1; pn

i is the position of the particle i at iteration n; pbesti is the
best position of the particle i; gbest is the best position of the group (best of all
pbests). Similarly, the position is updated towards the gbest position as follows:

pn�1
i � pn

i � vn�1i : �3�

3 Model-in-the-loop design optimisation process

The approach that we used is a model-in-the-loop design optimisation process, as
illustrated in Figure 3. In the middle of the diagram, the vehicle is modelled in a
simulation tool such as PSAT,1 ADVISOR (Wipke et al., 1999), or VTB (Gao et al.,
2004), and this model is embedded in a computational loop. Initially, the vehicle
model is simulated using the initial values of the design variables; and we get the
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numerical values of the objective function, in this case, the composite fuel economy

in terms of mpgge (miles per gallon gasoline equivalent). In the meantime, the

constraint functions, in this case, the vehicle performance, are evaluated. These

simulated results are then fed back to the optimisation algorithm, which generates a

new set of values for the design variables. Subsequently, the vehicle model is

simulated again to get the values for the objective function and the constraint

functions. The simulation results are fed back to the optimisation algorithm, again to

generate yet another new set of design variables. This iteration process goes on and

on until we have reached some stopping criteria for the optimisation process. Notice

that the design variables are restricted within their bounds during this process.

Figure 3 Model-in-the-loop design optimisation process

For this study, powertrain system analysis toolkit (PSAT) is used as the modelling

and simulation tool. PSAT has been developed by the Argonne National Laboratory

and sponsored by the US Department of Energy (DOE).1 It can help a vehicle

designer to size components and develop realistic hybrid powertrain and its control

system. PSAT can accurately simulate vehicle performance, fuel economy and

emissions. In using PSAT, we mainly need to select powertrain topology, define

component sizes, and construct control strategy. Note that the component sizing is

automated by the model-in-the-loop process.

4 HEV design optimisation problem setup

As an application example, PSAT is used to optimise a parallel HEV for maximum

fuel economy on a composite driving cycle. Four global algorithms, DIvided

RECTangle (DIRECT), simulated annealing (SA), genetic algorithm (GA), and

particle swarm optimisation (PSO) are used in the model-based design optimisation.

The vehicle model `gui_par_midsize_cavalier_ISG_in' (available in the PSAT model

library) has been chosen for this optimisation study. This vehicle is a two wheel-drive

starter-alternator parallel configuration with manual transmission. The basic

configuration of the parallel HEV used for simulation study is illustrated in

Figure 4 and main components of the HEV are listed in Table 1.
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Figure 4 Configuration of the selected parallel HEV in PSAT

Table 1 Parallel HEV components

Component Description

Fuel Converter 84 kW and 2.2 L Cavalier gasoline engine

Motor ECOSTAR motor model with continuous power of 33 kW and peak
power of 66 kW

Battery Panasonic NiMH battery with capacity 6.5Ah and 240 cells

Transmission Four speed manual gearbox with final drive ratio 3.63

Control strategy Default propelling, shifting and braking strategies

The objective is to maximise the composite fuel economy, which is computed based
on city fuel economy and highway fuel economy. By definition, composite fuel
economy is the harmonic average of the SOC-balanced fuel economy values during
the two separate drive cycles (Wipke et al., 2001). Specifically, the composite fuel
economy is calculated as given by the following formula:

composite fuel economy � 1

0:55

City FE
� 0:45

Hwy FE

; �4�

where City_FE and Hwy_FE represent the city and highway fuel economy values
respectively. The driving cycle is composed of city driving represented by FTP-75
(Federal Test Procedure) and highway driving represented by HWFET (Highway
Fuel Economy Test). The two drive cycles are shown in Figures 5(a) and 5(b),
respectively.
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Figure 5 The drive cycles

The following vehicle performance constraints are imposed on the design problem.

Acceleration time 0±60mph <= 18.1 s

Acceleration time 40±60mph <= 7 s

Acceleration time 0±85mph <= 35.1 s

Maximum acceleration >� 3.583m/s2

Table 2 shows the six design variables used in this study. The first two define the
power ratings of the fuel converter (the engine) and motor controller. The third,
fourth and fifth variables define the number of battery modules, minimum battery
state of charge (SOC) allowed and maximum battery SOC allowed. Note that the
SOC values are part of the control strategy parameters. Although they are not
related to component-sizing, they have a direct impact on the fuel economy of an
HEV design. The sixth design variable defines final drive ratio. Each design variable
is also restricted within a lower and an upper bound.
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Table 2 Upper and lower bounds of design variables

Design variable Description Lower bound Upper bound

eng.scale.pwr_max_des Fuel converter power rating 40 kW 100 kW

mc.scale.pwr_max_des Motor controller power rating 10 kW 80 kW

ess.init.num_module Battery number of cells 150 350

ess.init.soc_min Minimum SOC allowed 0.2 0.4

ess.init.soc_max Maximum SOC allowed 0.6 0.9

fd.init.ratio Final drive ratio 2 4

5 HEV design optimisation results in PSAT

The problem now becomes quite challenging since this is a constrained multi-variable
optimisation problem.

Firstly, the default vehicle with the initial values of design variables given in
Table 3 is simulated in PSAT. The fuel economy was observed to be 35.1mpg as
given in Table 4 under the first column.

Table 3 Initial design variable values

Design variable Initial value

eng.pwr_max_des 86 kW

mc.pwr_max_des 65.9 kW

ess.init.num_module 240

ess.init.soc_min 0.2

ess.init.soc_max 0.9

fd.init.ratio 3.63

Table 4 Comparison of fuel economy

Fuel economy

After optimisation

Before optimisation DIRECT SA GA PSO

35.1mpg 39.64mpg 40.37mpg 37.6mpg 37.1mpg

Secondly, the optimisation algorithms, DIRECT, Simulated Annealing, Genetic
Algorithms, and PSO, are looped with the PSAT Vehicle Simulator and the
optimisation is carried on. For this step, the same default vehicle configuration given
in Figure 4 and Table 1 is taken and the bounds for the design variables are taken as
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given in Table 2. The four algorithms are allowed to run for 400 function
evaluations. Using the same number of function evaluations will allow us to compare
the performance of the different algorithms. A comparison of the fuel economy
before and after the optimisation is given in Table 4. A significant improvement in
the fuel economy is seen due to optimisation (to a lesser extent in the case of PSO and
GA, though). Of all the four algorithms, SA performs well with an approximate
improvement of 5mpg.

Table 5 shows the final values of the six design variables after optimisation. We
can notice that the rating of the electric motor is greatly reduced, implying that
down-sizing of the electric motor has been achieved. On the other hand, the engine is
down-sized to a lesser extent in DIRECT and SA cases, while up-sized in GA and
PSO cases. Given the vehicle performance constraints, the trade-off of engine
down-sizing and motor down-sizing can be realised by adjusting the lower and upper
bounds of the design variables.

Table 5 Final design variable values

Final value

Design variable Initial value DIRECT SA GA PSO

eng.pwr_max_des 86 kW 83.1 kW 82.4 kW 95.5 kW 87.1 kW

mc.pwr_max_des 65.9 kW 20.2 kW 21.9 kW 24.2 kW 14.8 kW

ess.init.num_module 240 245 311 300 238

ess.init.soc_min 0.2 0.25 0.22 0.34 0.26

ess.init.soc_max 0.9 0.84 0.78 0.89 0.78

fd.init.ratio 3.63 3.9 4.0 3.49 3.42

Table 6 shows the performance results of the hybrid powertrain after optimisation.
Essentially, all the optimisation algorithms resulted in improved vehicle
performance.

Table 6 Comparison of the HEV performance

After opt.

Constraint Constr. value Before opt. DIRECT SA GA PSO

0±60mph <�18.1 s 18.1 s 15.5 s 10.8 s 11.9 s 11.1 s

40±60mph <�7 s 7 s 6.8 s 5 s 4.4 s 4.9 s

0±85mph <�35.1 s 35.1 s 30.6 s 20.7 s 21.2 s 20 s

Max. accel. >�3.583m/s2 3.583m/s2 3.97m/s2 4.07m/s2 3.94m/s2 3.99m/s2

The mass of the vehicle changes as the design variables change because the mass of
the vehicle depends directly on some design variables. In particular, of the chosen six
design variables, three design variables (power ratings of engine and motor and
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energy modules) affect the mass of the vehicle. The mass of the vehicle before
and after the optimisation is given in Table 7. The vehicle mass decreased for
DIRECT and SA cases, while the vehicle weight increased slightly in the case of GA
and PSO.

Table 7 Mass of HEV before and after optimisation

Mass of the vehicle

After optimisation

Before optimisation DIRECT SA GA PSO

1683 kg 1635 kg 1656 kg 1694 kg 1690 kg

Figure 6 shows how objective function (fuel economy) value improves against the
design iteration number. The cross curve is for the SA case; the circle curve is for the
DIRECT case; the star curve is for the GA case; and the square curve is for the PSO
case. We can see that the fuel economy improvement with the SA and DIRECT
algorithms is very close until about 125 function evaluations, after which SA leapt
ahead of DIRECT. GA is slow to catch SA and DIRECT initially because it takes
some function evaluations to generate the initial populations. After about 200
function evaluations, GA did not find any better design point to get further
improvement in the fuel economy. The performance of PSO is similar to that of GA.
Overall; SA performed the best for this particular design optimisation problem.

Figure 6 Performance comparison of DIRECT, SA, GA, and PSO
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6 Conclusion and discussions

Based on the optimisation results, the following observations can be made. The fuel
economy of the parallel HEV is increased from 35.1 to 39.64mpg with the DIRECT
algorithm, while from 35.1 to 40.37mpg with the SA algorithm. The performance of
the optimised HEV shows a great improvement. The power rating of the traction
motor is reduced significantly.

In this study, only global optimisation algorithms are tested for a hybrid vehicle
design, and generally have slower convergence. On the other hand, derivative-based
algorithms are known for their faster convergence. In fact, a hybrid optimisation
algorithm can be used that combines the benefits of both a global and a local
algorithm. The global algorithm can reach a design point near the global optimum
region after a certain number of optimisation steps. Then a local algorithm kicks in
and the process is continued until a global optimum is found.

The design optimisation takes about 100 hours running PSAT on a single PC.
This long design time necessitates the development of a more efficient optimisation
methodology, such as using parallel and distributed computing, which is part of our
ongoing research effort.
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