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H I G H L I G H T S  

• Time-delayed recurrent neural network (TD-RNN) was proposed for lithium ion battery SOC estimation. 
• Neurons states were checked through time frequency analysis for identifying ‘overexcited’ neurons. 
• Expectational battery SOC estimation accuracy is consistently obtained using the TD-RNN without ‘overexcited’ neurons.  
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A B S T R A C T   

Various neural network models have been adopted for lithium ion battery state of charge (SOC) estimation with 
good accuracy. However, problems for battery states estimation from neural networks were usually not reported, 
which is mainly due to the lack of effective solutions other than a trial and error training process. This paper 
firstly proposes time-delayed recurrent neural network for lithium ion battery modeling and SOC estimation. 
Both exceptional performances and unexpected overfitting or poor performances are reported with in-depth 
analysis of the root cause. With explicit formulation of the network, each hidden neuron’s output is exam-
ined. It is discovered that overexcited neurons could be the root cause for unexpected poor performances of the 
neural network. Without overexcited neurons, expectational SOC estimation accuracy is consistently obtained 
with estimation error being less than 1% for lithium ion magnesium phosphate (LiFeMgPO4) batteries consid-
ering a fair comparison in literature.   

1. Introduction 

Accurate estimation of lithium ion battery state of charge (SOC) is 
important since it tells the user the amount of ‘fuel’ left for the systems 
or devices powered by the battery such as electrified vehicles, un-
manned aerial vehicles, and cell phones. The fact that there are so many 
papers studying battery SOC estimation is because of the technical dif-
ficulty for an accurate estimation under arbitrary battery operating 
conditions for different types of lithium ion batteries. 

Battery models can be classified into three major groups as electro-
chemical models [1–5], equivalent circuit models [6–10], and machine 
learning models [11–17]. Electrochemical models are generally 
considered as computationally expensive and hence are not suitable for 
battery SOC estimation in real-time. Even though various reduced-order 

models were developed through simplifications and assumptions, the 
SOC estimation accuracy is similar to the equivalent circuit model [18]. 
There are a variety of battery equivalent circuit models where circuit 
components such as resistance and capacitance are used to approximate 
the dynamics of the battery [6]. These models are computationally 
efficient with a reasonably good accuracy for most lithium ion batteries. 
However, most models rely on an open circuit voltage (OCV) vs. SOC 
curve to build functional relationship between the hidden state (i.e., 
SOC) and directly measurable quantity such as battery current and 
terminal voltage. When such an OCV-SOC curve contains a relatively flat 
region such as in lithium ion magnesium phosphate (LiFeMgPO4) bat-
teries, SOC estimation was not as accurate as other types of lithium ion 
batteries [16]. Besides, the model parameters usually vary at different 
battery SOC and aging levels, which make accurate SOC estimation 
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more difficult during its life cycle. In practice, the equivalent circuit 
models are usually applied together with different filtering algorithms 
(e.g., Kalman filters and particle filters) [19–21] for battery SOC esti-
mation under dynamic charging/discharging profiles. 

Machine learning models are recently gaining popularity for battery 
SOC estimation. Typical models include Gaussian process, feedforward 
neural network, time-delayed neural network, recurrent neural network 
(RNN), and long short-term memory (LSTM) neural network. The major 
limitation of various neural network models is being a black box. With 
random weight initialization, converged training results at different 
local optimums could result in different performances for batteries 
under new operating conditions. Furthermore, it is difficult to identify 
the root cause and explain the results. Nevertheless, accurate results for 
SOC estimation were reported using different machine learning 
methods. Kang et al. [11] employed radial basis function neural network 
for SOC estimation of lithium ion manganese oxide (LiMn2O4) batteries 
considering the aging effect. SOC estimation error was reported within 
5% or less. Chaoui et al. [12] used time-delayed neural network to es-
timate both battery SOC and state of health for lithium ion phosphate 
(LiFePO4) batteries. However, the SOC estimation accuracy was only 
reported under constant charging and discharging current profiles. Xia 
et al. [13] proposed wavelet neural network by replacing the linear 
output layer as a wavelet function and applied the model for SOC esti-
mation of Samsung ICR-18650-22P (LiNiMnCoO2) batteries. SOC esti-
mation error was reported within 5% under different current profiles. 
Chemali et al. [14] reported a low SOC mean absolute error of 0.573% at 
a fixed ambient temperature condition with proper training for Pana-
sonic 18650PF (LiNiCoAlO2) batteries using the LSTM neural network. 
Yang et al. [15] employed the LSTM for SOC estimation of A123 18,650 
batteries (LiFePO4) where the SOC estimation error was generally below 
5% but with sudden error increase and some noisy behaviors. In addi-
tion, the performance did not show dominant advantages compared to 
an unscented Kalman filter approach with an equivalent circuit model. 
Xi et al. [16] employed Gaussian process for learning of model bias from 
equivalent circuit models, and then used the corrected model to estimate 
SOC for lithium-ion magnesium phosphate (LiFeMgPO4) batteries. Due 
to the flatness of the OCV-SOV curve, the typical equivalent circuit 
models can only reach less than 10% estimation error, but the error was 
reduced to be less than 5% with the aid of the Gaussian process for bias 
correction. Hong et al. [17] employed the LSTM neural network for 
battery SOC estimation considering weather parameters. To prevent 
overfitting, the dropout technique [22] was employed. They reported 
within 2% SOC estimation error for the studied battery. However, bat-
tery type information was not provided. 

There are a few common limitations of existing work by employing 
various neural network models for battery SOC estimation. Firstly, they 
were mainly applying existing network structures for battery SOC esti-
mation. Secondly, the performances from the neural network models 
were not often compared with equivalent circuit models. From limited 
reported results, they do not perform dominantly better than the 
equivalent circuit models [15]. Thirdly, problems of the neural network 
models for battery SOC estimation were usually not studied or reported. 
Poor performances are often attributed to inappropriate training pro-
cesses. The common solutions are usually to retrain the network with 
more or less layers, neurons, and adding a dropout layer with certain 
dropout probability to prevent overfitting. Such an overall trial and 
error process makes neural network models less attractive for battery 
states estimation especially when the results are also difficult to explain. 

Contribution of this paper is three-fold. Firstly, we propose time- 
delayed RNN (TD-RNN) for lithium ion battery SOC estimation, which 
should be a more suitable network structure for lithium ion battery 
states estimation. Secondly, we analyze exceptional and poor perfor-
mances of the battery SOC estimation results from the proposed TD-RNN 
and further identify the possible root cause. Thirdly, we compare the 
results to the study using equivalent circuit models and the LSTM neural 
network. The studied battery is lithium ion magnesium phosphate 

(LiFeMgPO4) battery, which has a relatively flat OCV-SOC curve that 
makes accurate SOC estimation difficult. 

The rest of the paper is organized as follows. Section II elaborates 
data generation including simulation and experiment data. Section III 
presents the proposed TD-RNN modeling and formulation for battery 
terminal voltage prediction and qualitatively analyzes its modeling 
similarity with the equivalent circuit model. Section IV presents 
exceptional and unexpected overfitting performances of the TD-RNN 
using both simulation and experimental data, and analyzes the root 
cause through examining the output from each neuron. Section V pro-
poses time frequency analysis to quantitatively identify the ‘overexcited’ 
neurons so that exceptional performance of the TD-RNN can be main-
tained while avoiding unexpected poor performances. Section VI further 
discusses the robustness of the TD-RNN and provides comparison study 
with the LSTM neural network and the equivalent circuit model. Finally, 
conclusion and future work are presented in Section VII. 

2. Data generation – Simulation and experimental data 

Both simulation and experimental data were obtained using Valence 
26,250 lithium-ion magnesium phosphate (LiFeMgPO4) batteries with a 
2.5 Ah nominal capacity. Simulation data were generated based on a 
first-order resistance–capacitance (RC) battery model formulated as 
⎧
⎨

⎩

xk = xk− 1 − Δtik/Cr
zk = OCV(xk) + ikR(xk) + U1,k

U1,k = exp( − Δt/τ1(xk) )U1,k− 1 + R1(xk)[1 − exp( − Δt/τ1(xk) ) ]ik

(1) 

where xk, ik, zk are battery SOC, current, and terminal voltage at time 
step k, respectively; Δt is the discrete time interval; Cr is the rated battery 
capacity; OCV(xk) is a nonlinear function of battery open circuit voltage 
at given SOC values, i.e., the OCV-SOC curve; R(xk) is battery charging/ 
discharging resistance as a nonlinear function of battery SOC; U1,k is a 
recursive term due to the RC pair; τ1(xk) and R1(xk) are time constant 
and resistance of the first RC pair, respectively, and both are nonlinear 
functions of battery SOC. Battery OCV-SOC curve and parameters were 
obtained through battery characterization tests and results were re-
ported in the authors’ previous work [16]. Hence, simulation data of the 
terminal voltage were obtained using the battery model in Eq. (1) given 
any current profile with the known initial SOC value. For experimental 
data, actual measured terminal voltage data were obtained under three 
current profiles including the urban dynamometer driving schedule 
(UDDS), the New York city cycle (NYCC), and the mixture of the two 
cycles (i.e., one UDDS cycle followed by one NYCC cycle as a complete 
cycle denoted by UDDS-NYCC). In particular, the cycle currents were 
scaled such that the maximum current was at a 5C rate. The initial SOC 
was configured at 90% and the cycles were repeated till the SOC reached 
20%. The experiments were conducted at room temperature. 

3. TD-RNNS for battery modelling 

For terminal voltage modeling using the TD-RNN, battery SOC and 
current can be represented as an input vector with xi,k indicating the ith 

input parameter at time step k. For the simplest TD-RNN with only one 
hidden neuron and one time-delay step as shown in Fig. 1a, the func-
tional output at each layer (i.e., input layer, hidden layer, and output 
layer) is provided at the right-hand side of the figure. The same 
parameter notations are used at different layers in order to reduce the 
notation complexity when extending it to a more complex network 
structure. The input to one hidden neuron at the kth time step (i.e., Z1,k) 
includes the weighted sum of each input node, the weighted recurrent 
output of the hidden neuron at previous time step (i.e., y1,k-1), and a bias 
term of the hidden neuron (i.e., b1). The output of the hidden neuron at 
the kth time step y1,k is determined by a transfer (or activation) function f 
(•) which takes the input Z1,k. Finally, the output layer node computes 
the terminal voltage based on a linear function, i.e., the weighted y1,k 
with an addition of the bias term of the output layer node. Typically, all 
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input and output nodes are normalized during the training stage and the 
output should be denormalized for prediction. The number of parame-
ters that needs to be optimized is 6 for this simplest structure. With a 
hyperbolic tangent sigmoid transfer function, formulation in Fig. 1a can 
be rewritten as 
⎧
⎪⎪⎨

⎪⎪⎩

Z1,k = wo
11y1,k + bo

1

y1,k = 2/

{

1 + exp

[

− 2

(
∑

i
wi

i1xi,k + wr
11y1,k− 1 + bh

1

)]}
(2) 

where upper scripts of the parameter, i.e., o, i, r, and h, are added to 
distinguish the parameter difference at output, input, recurrent, and 
hidden layer, respectively. By comparing with the first-order RC model 
in Eq. (1), similarity of the two equations can be observed such as 
sharing a recursive function term. In particular, the battery model pa-
rameters in Eq. (1) are dependent on its SOC state. As such, we can think 
of a large set of model parameters in Eq. (1) whereas Eq. (2) contains 
only 6 parameters. 

Using the battery model parameters and characteristics determined 
through the offline test, battery terminal voltage under the UDDS profile 
can be determined based on Eq. (1) with an initial SOC set as 90%. To 
test the modeling capability of the TD-RNN with only one hidden node, 
the network was trained using time-series SOC and current as inputs, 
and the corresponding terminal voltage as the outputs. The terminal 
voltage comparison results are shown in Fig. 2a where the first-order RC 
model prediction was treated as the true result. In particular, the output 

from the hidden node (i.e., y1,k) was also presented in Fig. 2a since this is 
the main nonlinear component of the network. It can be observed that 
the overall training results are satisfactory with only one hidden neuron. 
As shown in Fig. 2b, the voltage calibration error could reach about 100 
mV, which is considerably large for battery voltage and SOC estimation. 
A desired error magnitude should be less than 10 mV in order to 
maintain accurate SOC estimation for this type of lithium ion battery. In 
addition, the neuron output takes the main responsibility for capturing 
the nonlinear behavior of the terminal voltage. 

When more neurons are used in the TD-RNN, Fig. 1b shows the 
extension and its formulation where index i indicates the ith input 
parameter, and index j represents the jth hidden neuron. The number of 
network parameters increases significantly especially for the weight 
parameter of the fully connected recurrent part. For example, for the 
network with 5 hidden neurons, the total number of network parameter 
is: 2× 5 + 5× 5 + 5 + 5 + 1 = 46. A further extension is to include more 
time-delay steps such as yj’ ,k− 2 and yj’ ,k− 3 with their own weight pa-
rameters. As such, for n time-delay steps, the total number of network 
parameter is: 2× 5 + 5× 5× n + 5 + 5 + 1. A more general formulation 
for TD-RNN can thus be written as 

⎧
⎪⎪⎨

⎪⎪⎩

Z1,k =
∑

j
wo

j1yj,k + bo
1

yj,k = 2/

{

1 + exp

[

− 2

(
∑

i
wi

ijxi,k +
∑

m

∑

j’
wr,m

j’ j yj’ ,k− m + bh
j

)]} (3) 

where m (=1, 2, …, M) is the index for the number of time-delay 
steps, j’ is the dummy index of j; wr,m

j’ j is the weight of the recurrent 
layer from the j’th neuron to the jth neuron at the corresponding time- 
delay step m. By revisiting Fig. 1b, it is clear that each hidden neuron 
is in charge of learning part of the nonlinearity of the system 
input–output relationship with information from other neurons at pre-
vious time steps. The final output is just a simple linear combination of 
each hidden neuron’s output. Hence, to better understand the perfor-
mance of the TD-RNN for lithium ion battery voltage and SOC estima-
tion, it is necessary to dive deeper to check each hidden neuron’s output. 

Similar to the battery voltage calibration using the simulation data 
from the first-order RC model, TD-RNNs with two and five hidden 
neurons were employed for the voltage calibration, and the output from 
each neuron is shown in Fig. 3a and c, respectively. Firstly, the expected 
result is that voltage calibration error has been significantly reduced as 
shown in Fig. 3b and 3d. In particular, the error is less than 4 mV most of 

Fig. 1. Schematic diagram and functional formulations of TD-RNNs with one 
time-delay step. 

a.TD-RNN with only one neuron b.Voltage calibration error with 
only one hidden neuron

Fig. 2. Performance of terminal voltage calibration of the TD-RNN with only 
one hidden neuron. 

a.TD-RNN with two neurons b.Voltage calibration error with 
two neurons

c.TD-RNN with five neurons d.Voltage calibration error with 
five neurons

Fig. 3. Performance of terminal voltage calibration of TD-RNN with two and 
five hidden neurons. 
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the time with five hidden neurons. Secondly, with more hidden neurons 
to share the task of approximating the nonlinear battery model, each 
neuron’s output seems to be more stable without abrupt changes within 
the short period of time as observed in Fig. 3a and c. 

4. Performances of TD-RNN with and without overexcited 
neurons 

To demonstrate the practical usefulness of machine learning models 
including the TD-RNN, the model should be able to predict battery 
performances accurately under new battery operating conditions. This 
section demonstrates the performance using both simulation data 
generated from the first-order RC model and the experimental data. 

4.1. Simulation data 

Using the first-order RC model as a reference to generate battery 
terminal voltage data given the true battery SOC and current profiles, 
performance of the TD-RNN can be verified through simulation study. 
The reason of using simulation data is to demonstrate the modeling 
capability of the TD-RNN for a known nonlinear battery model, thus to 
better understand the network configuration with respect to its 
modeling capability. In this study, terminal voltage under the UDDS 
current profile was used as training data sets for a defined TD-RNN with 
seven hidden neurons and one time-delay step. After the training, the 
TD-RNN was used to predict terminal voltage of the battery under two 
new current profiles, i.e., the UDDS-NYCC and the NYCC profile, and the 
predictions were compared to the true value. Fig. 4a and b show the 
accuracy of the voltage calibration, where the voltage calibration error 
is less than 2 mV most of the time. In particular, seven neuron outputs as 

shown in Fig. 4a are relatively stable. According to the rationale 
described above based on the observation in Fig. 3, each neuron is 
sharing the load to approximate the nonlinear battery function. Conse-
quently, voltage predictions of the TD-RNN for two other current pro-
files are accurate as shown in Fig. 4c – f. Particularly, NYCC is a quite 
different current profile compared to the UDDS, and yet the voltage 
prediction error is less than 4 mV most of the time. This example clearly 
demonstrates the exceptional performance of the TD-RNN for approxi-
mating the first-order RC model. 

On the other hand, unexpected overfitting could occur for the TD- 
RNN, which is not directly observable through the typical voltage cali-
bration process. Fig. 5a and b show the voltage calibration error of the 
TD-RNN under UDDS current profile when two time-delay steps were 
used. The voltage calibration error is again mostly less than 2 mV. 
However, the neuron outputs shown in Fig. 5a are quite noisy or 
‘overexcited’. When this trained TD-RNN was applied to two other 
battery current profiles for predicting the terminal voltage, unexpected 
voltage overfitting occurs as shown in Fig. 5c-f. This phenomenon can be 
repeatedly observed indicating that the ‘overexcited’ neurons are 
related to the overfitting of the TD-RNN. 

Another important finding through the simulation data is related to 
the reason of having ‘overexcited’ neurons. As the first order RC model 
contains only one recursive term, the TD-RNN with two time-delay steps 
would essentially make the model too complex to fit the first order RC 
model. Consequently, ‘overexcited’ neurons are often observed. 

4.2. Experimental data 

Accurate SOC estimation of this type of lithium ion battery is chal-
lenging using various battery equivalent circuit models (e.g., first-order 
RC and second-order RC models) even with advanced bias learning 

a.TD-RNN with seven neurons 
for UDDS calibration

b.UDDS voltage calibration 
error

c.TD-RNN for UDDS-NYCC 
voltage prediction

d.UDDS-NYCC voltage 
prediction error

e.TD-RNN for NYCC voltage 
prediction f.NYCC voltage prediction 

error

Fig. 4. TD-RNN with exceptional performance using one time-delay step and 
seven hidden neurons for battery voltage calibration and prediction under 
UDDS (a and b), UDDS-NYCC (c and d), and NYCC (e and f) profiles. 

a.TD-RNN with seven neurons 
for UDDS calibration b.UDDS voltage calibration 

error

c.TD-RNN for UDDS-NYCC 
voltage prediction

d.UDDS-NYCC voltage 
prediction error

e.TD-RNN for NYCC voltage 
prediction

f.NYCC voltage prediction 
error

Fig. 5. TD-RNN with unexpected over-fitting using two time-delay steps and 
seven hidden neurons for battery voltage calibration and prediction under 
UDDS (a and b), UDDS-NYCC (c and d), and NYCC (e and f) profiles. 
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methods as reported in [16]. The best results achieved were to obtain 
about 5% SOC estimation errors on average. In this study, the UDDS- 
NYCC profile was firstly employed to train a TD-RNN with five time- 
delay steps and seven hidden neurons, then the model was used to es-
timate battery SOC under UDDS and NYCC profiles. Fig. 6 shows one 
exceptional performance of the model where the SOC estimation error is 
consistently below 1% for two test profiles as shown in Fig. 6c-f. In 
particular, seven neuron outputs in Fig. 6a are quite stable. 

Unlike the filtering based SOC estimation methods, initial guess of 
the SOC is not needed using the TD-RNN. Battery SOC is directly pre-
dicted based on the time series data from the voltage and current. To 
further demonstrate the robustness of the method, partial test data from 
UDDS and NYCC profiles were used to predict the SOC. In particular, 
initial SOCs were set at 76% and 61% as shown in Fig. 7 and Fig. 8, 
respectively. A few findings are observed based on the results. Firstly, 
the initial SOC prediction from the TD-RNN seems to relate to the 
training data which starts at 90% SOC as shown in Fig. 6a. Secondly, 
SOC prediction accuracy is not as good as shown in Fig. 6c-f, which 
indicates that different initial conditions between training and testing 
influence the prediction accuracy. Thirdly, further change of the initial 
SOC as compared in Fig. 7 and Fig. 8 does not influence the model 
prediction capability, which is a desired property to make the model 
practically useful. 

It should be noted that the training process for the TD-RNN contains 
randomness due to the random weight initialization. As such, the 
training results could be different with the same network structure. 
Fig. 9a and b present the training results with the same network struc-
ture as in Fig. 6. Although the calibrated SOC matches the true SOC very 
well, some of the neuron outputs are quite noisy during some time pe-
riods. When this TD-RNN was used for estimation of the battery SOC 
under two new current profiles, large SOC estimation errors were 
observed as shown in Fig. 9c-f. It is difficult to explain the unstable 

performance of the TD-RNN on test conditions simply based on its 
training results. This phenomenon may apply to other neural network 
models, which influences the confidence of using them in practice. This 
study, through examining each neuron’s output, discovers possible root 
causes for unstable performances of the TD-RNN. We call these 
abnormal neurons as ‘overexcited’ neurons, which might be the root 
cause for poor performance of the neural network under various oper-
ating conditions. 

When running such training and testing process repeatedly for ten 
times, poor performances of the SOC estimation are all accompanied by 
these ‘overexcited’ neurons. Another example with ‘overexcited’ neu-
rons is shown in Fig. 10a. Although the trained SOC matches the true 
SOC very well, the SOC estimation accuracy of the TD-RNN is relatively 
poor under two testing conditions as shown in Fig. 10c-f. On the other 
hand, accurate SOC estimation for testing conditions can be obtained 
when the neuron output is stable during the training stage as shown in 

Fig. 6. TD-RNN without overexcited neurons using five time-delay steps and 
seven hidden neurons for battery SOC calibration and prediction under UDDS- 
NYCC (a and b), UDDS (c and d), and NYCC (e and f) profiles. 

a. SOC estimation under UDDS 
profile

b.UDDS SOC estimation error

c. SOC estimation under NYCC 
profile

d.NYCC SOC estimation error

Fig. 7. Battery SOC prediction with partial UDDS (a and b), and NYCC (c and d) 
profiles with 76% initial true SOC using the trained TD-RNN from UDDS- 
NYCC profile. 

Fig. 8. Battery SOC prediction with partial UDDS (a and b), and NYCC (c and d) 
profiles with 61% initial true SOC using the trained TD-RNN from UDDS- 
NYCC profile. 
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Fig. 6a. 

5. Identification of overexcited neurons 

Instead of finding ‘overexcited’ neurons through qualitative analysis, 
this section presents a way to quantitatively identify them through 
time–frequency analysis. ‘Overexcited’ neurons should contain rela-
tively high power spectrum value (measured in dB) for non-zero fre-
quencies at a certain period of time. For example, by conducting 
time–frequency analysis for neuron outputs in Fig. 9a, such a feature can 
be easily identified for each neuron as shown in Fig. 11. Among them, 
neuron 5, 6, and 7 are severer than others with higher power spectrum at 
about 350 mHz frequency between 1 and 1.5 h. Other neurons are also 
not healthy, although the power spectrum value is not as high as 
compared to these three neurons. As a comparison for neuron outputs 
shown in Fig. 6a where the TD-RNN shows exceptional performance for 
estimating the battery SOC, time–frequency analysis results are pre-
sented in Fig. 12. None of the neuron output shows high power spectrum 
value for frequency range above 50 mHz. 

6. Discussion 

6.1. Robustness of the TD-RNN for ‘unseen’ data sets 

A good modeling technique, which can truly capture the real physics 
of the system, should not solely rely on abundant training data. Other-
wise, its performance on new ‘unseen’ data sets may be unreliable. 
Considering actual discharge current profiles for lithium ion batteries, 
infinite amount of operating conditions is available. A common industry 
practice is to employ as much representative data as possible during the 
training, and provide ‘warning’ information for any ‘unseen’ data sets. 
Nevertheless, it is labor intensive and difficult to truly classify all 

Fig. 9. TD-RNN with overexcited neurons using five time-delay steps and seven 
hidden neurons for battery SOC calibration and prediction under UDDS-NYCC 
(a and b), UDDS (c and d), and NYCC (e and f) profiles. 

Fig. 10. TD-RNN with overexcited neurons and another local optimum using 
five time-delay steps and seven hidden neurons for battery SOC calibration and 
prediction under UDDS-NYCC (a and b), UDDS (c and d), and NYCC (e and 
f) profiles. 

Fig. 11. Time frequency analysis for neuron outputs presented in Fig. 9a where 
the TD-RNN shows poor performance for battery SOC estimation. 
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‘unseen’ data sets for time series current and voltage profiles. As such, a 
good modeling technique should be able to tolerate some ‘unseen’ data 
sets. To further demonstrate the usefulness of ‘overexcited’ neurons for 
determining appropriate neural network structure for ‘unseen’ data sets, 
Fig. 13 shows the results of employing an inappropriate network 
structure for ‘unseen’ data sets. In particular, one time-delay step was 
employed for the TD-RNN but with twenty hidden neurons, in which 
481 network parameters need to be determined. To create ‘unseen’ data 
sets for testing, the NYCC profile was used as the training and the other 
two profiles were employed for testing. There are continuous large 

discharge currents for the other two profiles resulting in abrupt SOC 
reductions, which are ‘unseen’ from the NYCC profile. It is clearly shown 
in Fig. 13a that many neuron outputs are ‘overexcited’ even though SOC 
calibration error is minimized as shown in Fig. 13b. Consequently, SOC 
estimation for the other two profiles contains large errors and unex-
plainable behaviors. Such unreliable and unpredictable performances of 
the neural network would prevent its wide adoption in reality. On the 
other hand, with proper network structure as identified before, in 
addition to stable neuron outputs as shown in Fig. 14a, the model is 
capable of providing reliable and accurate SOC estimation even for 
‘unseen’ data sets as shown in Fig. 14c and d where the maximum SOC 
estimation error is less than 2.5%. 

6.2. Usage of ‘overexcited’ neurons 

With the capability of examining the ‘overexcited’ neurons, a proper 
TD-RNN structure for lithium ion battery states estimation can be more 
effectively determined. A recommended flowchart is shown in Fig. 15. 
Users can start with a set of TD-RNN structures (e.g., different number of 
time delay steps and hidden neurons). For each network structure, 
training can be repeated M times with random initial weights. Instead of 
simply selecting the training result with the best performance (e.g., the 
root mean squared error), we recommend to check ‘overexcited’ neurons 
in each training result for each network structure, and discard the 
training results if ‘overexcited’ neurons are identified. Finally, the 
training result with the best performance but without ‘overexcited’ 
neurons is considered as the most suitable TD-RNN structure. 

6.3. Comparison of the TD-RNN with the LSTM network and the 
extended Kalman filter (EKF) 

To demonstrate the effectiveness of the TD-RNN, the LSTM network 
and EKF were employed for comparison using the experimental data and 
the results are shown in Fig. 16. For the TD-RNN and LSTM network, the 
UDDS-NYCC profile was used as training data sets, and SOC under the 
other two profiles (i.e., UDDS and NYCC) was directly predicted. Same 
as the TD-RNN, the LSTM network only takes voltage and current as two 
input time series data for SOC prediction. Other network specifications 
include a layer of 500 LSTM hidden units, followed by a dropout layer 
with 30% dropout probability, followed by another layer with 50 fully 
connected hidden units, and followed by another dropout layer with 

Fig. 12. Time frequency analysis for neuron outputs presented in Fig. 6a where 
the TD-RNN shows exceptional performance for battery SOC estimation. 

a. SOC calibration under NYCC 
profile

b. NYCC SOC calibration error

c. SOC estimation under UDDS-
NYCC profile

d. SOC estimation under UDDS 
profile

Fig. 13. TD-RNN with overexcited neurons using one time-delay step and 
twenty hidden neurons for battery SOC calibration and prediction under NYCC 
(a and b), UDDS-NYCC (c), and UDDS (d) profiles. 

Fig. 14. TD-RNN without overexcited neurons using five time-delay steps and 
seven hidden neurons for battery SOC calibration and prediction under NYCC (a 
and b), UDDS-NYCC (c), and UDDS (d) profiles. 
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30% dropout probability to prevent overfitting. Trial and error process 
were taken in addition to referring to an existing work in reference [14] 
to obtain the results from the LSTM with reasonably good accuracy. The 
results from the EKF were obtained from authors’ previous study based 
on the first order RC model with an initial guess of SOC at 70% [16]. 
Traditional feedforward neural networks (FNNs) were not considered 
for comparison because they generally do not outperform the LSTM 
based on the study in literature. In addition, extra features (e.g., average 
current and average voltage over a given time steps) need to be manu-
ally selected in FNNs to increase the SOC prediction accuracy. 

Insightful findings are summarized as follows in the comparison 
study. Firstly, the TD-RNN shows consistent exceptional performances 
when choosing the results without ‘overexcited’ neurons. Secondly, the 
LSTM shows good accuracy especially compared to the results from the 
EKF. The SOC mean absolute error was calculated as 1.48% and 3.47% 
for UDDS and NYCC profile, respectively. It is worth noting that the 
sudden SOC drop in the NYCC profile as shown in Fig. 16c is the pattern 
exhibited in the training profile and is learned by the LSTM. Such a 
phenomenon is consistently observed even after changing the LSTM 
network configuration. Thirdly, as revealed in authors’ previous work 
with appropriate convergence study of the EKF [16], the relatively large 
SOC estimation error from the first order RC model with the EKF is 
mainly because of the modeling error of the first order RC model 
combining with a fairly flat OCV-SOC curve for this Valence 26,250 
lithium ion magnesium phosphate (LiFeMgPO4) battery. 

It is worth noting that more accurate SOC estimation with a smaller 
mean absolute error was reported in [14] using the LSTM network, e.g., 
0.573% at one of the best validation configurations with proper training 
settings. There are two important differences between the two studies. 
The first difference is the battery type, i.e., LiFeMgPO4 in this study vs. 
LiNiCoAlO2 in [14]. Different battery characteristics could make the 
same algorithm to have different accuracy performances. The second 
major difference is the training and validation data sets selection. In this 
study, only one profile (i.e., UDDS-NYCC) was used as training and the 
other two (i.e., UDDS and NYCC) were used for validation. In the 
reference study [14], ten loading profiles were created from a mixture of 
four drive cycles. Among ten loading profiles, eight or nine profiles were 
used for training and the rest for validation. It is expected that the 
validation data sets may not be too much different compared to the 
training data sets. Considering these factors, the accuracy achieved for 
the LSTM network in this study is comparable to other reported results 
such as in [14,15]. 

7. Conclusion and future work 

This paper proposed the TD-RNN for lithium ion battery SOC esti-
mation. The proposed network structure can accurately characterize 
dependency of battery SOC as a time series function of battery current 
and terminal voltage. Although the studied battery (LiFeMgPO4) pos-
sesses a flat OCV-SOC curve which imposes great challenges for tradi-
tional SOC estimation methods, the TD-RNN can achieve less than 1% 
SOC estimation accuracy with proper training of the network. Such an 
accuracy improvement can be considered as exceptional compared to 
previous study for the same battery using a bias learning method com-
bined with an equivalent circuit model. More importantly, this paper 
further analyzed the poor performance of the TD-RNN, and proposed the 
concept of ‘overexcited’ neurons as potential root cause for unexpected 
overfitting or poor performance of the neural network. This assumption 
was validated through repeatedly training of the TD-RNN with random 
initial weights. The network without ‘overexcited’ neurons can estimate 
SOC accurately, whereas the network with ‘overexcited’ neurons usually 
show unexpected results under testing conditions. A good TD-RNN 
structure can thus be more effectively determined through examining 
the ‘overexcited’ neurons in addition to existing approaches. Compari-
son with the LSTM network reveals that the TD-RNN is more suitable for 
battery SOC estimation in addition to the fact that battery SOC should 
physically be determined by its most recent current and terminal voltage 
history. 

Future work is to extend the TD-RNN for battery SOC and state of 
health (SOH) estimation. Similar to any data-driven methods, battery 
aging data will be used to train the TD-RNN. Other than using only 
current and voltage time series data as input features, battery SOH 
should also be incorporated as an input feature to model the coupling 
property between battery SOC and SOH. Effectiveness of the battery SOC 
and SOH estimation in practice should also consider other factors such 
as temperature and measurement noises. 
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Provide candidate TD-RNN
structures

Train each network M times
with random initial weights

Without overexcited
neurons?

Save the training result
with the best performance

Discard the
training result

Yes

No

Fig. 15. Flowchart for selecting the best TD-RNN network through identifica-
tion of the ‘overexcited’ neurons. 

a. SOC estimation under UDDS 
profile

b. UDDS SOC estimation error

c. SOC estimation under NYCC 
profile

d. NYCC SOC estimation error

Fig. 16. Comparison of the TD-RNN with the LSTM network and EKF for bat-
tery SOC estimation under UDDS (a and b) and NYCC (c and d) profiles. 
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