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Abstract— The battery thermal management (BTM) system
plays an increasingly important role today in the safety of electric
vehicles (EVs) and hybrid electric vehicles (HEVs) as the battery
capacity and power ratings keep growing. The BTM system is
commonly coupled with the vehicle passenger cabin HVAC sys-
tem. This integrated thermal system is a major onboard energy
consumer, and its complexity brings challenges to its control.
With the planned-ahead speed profile and the corresponding
power trajectory obtained from the connected and automated
vehicle (CAV) technology, predictive control makes a desirable
option for the integrated system to maintain battery safety and
passenger comfort while lowering energy consumption. However,
in order to achieve both high accuracy and low cost in a wide con-
trol range, a very long prediction horizon and high sampling rate
are both necessary. This will overwhelm the processing capacity
of the onboard electronic control unit (ECU) if using conventional
predictive control. In this paper, a two-stage predictive control
strategy for the BTM and HVAC coupled system is proposed to
solve this problem. In stage 1, based on the integrated cooling
system efficiency features, a hierarchical and iterative dynamic
programming (HIDP) scheme is designed to derive the optimal
battery temperature trajectory to reach the set point at the end
of the horizon with a modest computation burden. In stage 2,
a control-oriented model is constructed for the cooling system
and a model predictive controller (MPC) is accordingly built to
track the trajectory from Stage 1 while enforcing the energy
saving. A high set-point-tracking performance and as high as
10.61% energy saving for the cooling system in the UDDS cycle
are verified by simulation results. The real-time implementation
capability of the proposed strategy is demonstrated by the vehicle
emulator experiments based on hardware in the loop (HIL) and
a rapid control prototyping (RCP) platform.

Index Terms— Battery thermal management (BTM), heating-
ventilation-air-conditioning (HVAC), connected and automated
vehicle (CAV), dynamic programming (DP), model predictive
control (MPC), real-time optimization.

I. INTRODUCTION

THE HEVs, plug-in HEVs (PHEVs) and EVs are show-
ing growing popularity in the vehicle market. With the

advancement in lithium-ion battery technologies, both the
capacity and power of onboard batteries are increasing. This
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puts a high demand on the performance of the battery thermal
management (BTM) system control for vehicle safety and
energy efficiency.

Meanwhile, the performance of the passenger cabin HVAC
system is highly influential on not only passenger comfort
but also energy consumption. Since the HVAC system in
HEVs and EVs is a major consumer of the battery energy,
its operation can results in considerable reduction in driving
range, as high as 50% as recorded [1]. For this reason,
the optimization of the HVAC system and its control become
a notable topic of study [2].

Cooling for the batteries and the passenger cabin air are
both needed in a hot climate. Practically, the cooling capacity
of the BTM system is almost always originated from the
HVAC system. Therefore, the BTM and HVAC form an
integrated system. From a general point of view, there are three
architectures of integration [4], [5], i.e. passive air cooling,
active air cooling, and liquid cooling, in the order of cooling
capacity. The active air cooling uses a dedicated air path to
direct the cool air from the HVAC evaporator to the battery
chamber and to return the warm air back to the evaporator.
It provides considerable cooling capacity with relatively low
complexity, making it a desirable option for vehicles with
medium battery power, and is investigated in this paper.

The control for this integrated system is challenging. The
high complexity from the integration gives a sophisticated
object. The needs for battery safety and passenger comfort
require high performance in temperature regulation and refer-
ence tracking. On top of these, energy saving is also a major
concern. Predictive control is a desirable option for its ability
to utilize system model and take action in advance. This option
is facilitated by the connected and automated vehicle (CAV)
technology. Ground infrastructures and vehicle ECUs in a
CAV system will include traffic planning and power prediction
algorithms. Through vehicle to vehicle (V2V) and vehicle
to infrastructure (V2I) communications, vehicles in the CAV
network can acquire future speed profile and power profile
over a long horizon. These are two major impact factors for
the operation of the integrated cooling system. In order to
handle the power peaks in the far future during which battery
heat generation rate may exhaust the cooling capacity, and to
achieve a long term high efficiency, a long prediction horizon
is needed. On the other hand, a high sampling rate is needed to
achieve high control accuracy and fast response on a short time
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scale. However, adopting a very long prediction horizon and
high sampling rate simultaneously in a conventional predictive
controller will bring overwhelming computation burden to the
onboard electronic control unit (ECU), making the control
impractical.

A considerable number of studies have been conducted
regarding the control optimization of the vehicle BTM and
HVAC systems. In [6], the thorough heat load model of
vehicle is studied, engine and A/C coordination system is
investigated, and a multi-object PID controller with artificial
neural network (ANN) parameter tuning scheme is designed
and tested in a comprehensive vehicle model. In [7], an inte-
grated vehicle energy model, which include the A/C system,
is established, and a fuzzy logic controller with ANN and
genetical algorithm optimization on the nonlinear part is
designed. These are examples of conventional controllers with
the enhancements from intelligent algorithms, which do not
require an accurate system model, are adaptive to various
scenarios, but without predictive ability. Model predictive
control (MPC) schemes are proposed to utilized projected data
for optimization, such as in [8]. MPC has been adopted for
BTM and HVAC respectively in [9] and [10] with the CAV
support, but integration is not considered. The integration of
BTM and HVAC controls respectively with power-train control
are investigated in [12] and [11], where the sequential control
concepts are introduced, but without BTM and HVAC being
considered together. Sequential control strategies involving
the BTM and HVAC integrated system are proposed in [13]
and [14], but the BTM is only considered as a downstream
system of the HVAC with no influence on the HVAC system
in return.

Dynamic programming (DP) is a desirable strategy for
designing control trajectory with minimum overall system
cost [15]–[18]. But conventional DP is known for its mas-
sive amount of calculations and is thus challenging for real-
time implementation. In [15], the concept of iterative DP
with live updated constraints is proposed for vehicle power
optimization. In [18], an iterative DP is adapted for BTM
with real-time capability. It uses iteratively narrowing state and
control grid to determine the optimal path with relatively low
computation. However, fixed high sampling rate still makes
it difficult to accommodate a very long horizon, and the use
of linear approximation in calculating historical costs finds
difficulty in handling highly nonlinear cost function.

In this paper, a two-stage predictive control strategy for
the BTM and HVAC integrated system is proposed to solve
the dilemma between the need for a long prediction horizon
with a high sampling rate and a low computation burden.
In stage 1, a hierarchical and iterative DP (HIDP), which
largely decreases the number of computations and memory
usage, is designed to generate the optimal battery temperature
trajectory over a long horizon, with the support of BTM and
HVAC integrated system efficiency data. In stage 2, control-
oriented model of the integrated system is constructed, based
on which an MPC is then built to track the temperature
references and enforce energy savings on a shorter time
scale. The proposed strategy accomplishes battery thermal
safety, passenger comfort, and energy saving at the same time.

TABLE I

SYMBOL LIST FOR SYSTEM MODEL

The successful operation on the real-time vehicle emulator
validates its capability of onboard implementation.

In section II, the BTM and HVAC integrated model is estab-
lished. The Stage 1 and Stage 2 controllers are described in
section III and section IV, respectively. Simulation results and
real-time implementation are in section V and VI. Section VII
summarizes the work.

II. SYSTEM MODEL ESTABLISHMENT

The symbols used by the system model is listed in Table. I.
Active air cooling method is investigated in this work.

The principle of the BTM and HVAC system integration is
illustrated in Fig. 1. The cool air from the HVAC evaporator
is directed by a dedicated air path to the battery chamber where
the batteries are cooled. The warm air after cooling is directed
back to the evaporator. By controlling the air flow rate to the
battery chamber via the BTM fan speed, the heat dissipation
rate can be adjusted.

A high fidelity simulation model is established based on
the NREL CoolSim vehicle HVAC simulation model template.
A lumped battery pack thermal model is built to represent the
BTM physics, which can be expressed as (1). The thermal load
and air flow of the CoolSim model are modified to include the
BTM thermal system and to reflect the integration.

Rbat = f (SOC, Tbat )

Ibat = (VOC −
�

V 2
OC − 4Pbat Rbat )/(2Rbat )
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Fig. 1. BTM and HVAC coupling principle.

Fig. 2. General principle of the proposed control strategy.

PH I = I 2
bat ·Rbat

�Tbat = δt
PH I (t) − PH O (t)

Cbat ·mbat
Pbat = Pmot + PA/C

PA/C = PH O/ηH O + Pa/c(T ∗
cab, Tamb)/ηa/c (1)

Rbat ’s dependency on SOC is modest unless SOC is lower
than 20%. The efficiencies ηH O and ηa/c will be discussed in
section III.

The integrated model is simulated in Simulink®. System
parameters and coefficients, input, state and output values are
recorded from the results of a series of simulations. These data
are used to draw the system efficiency characteristics and to
identify the parameters of the control-oriented model in the
next two sections.

III. STAGE 1 - BATTERY TEMPERATURE TRAJECTORY

PLANNING

The symbols used in Stage 1 is listed in Table. II. The
general diagram of the proposed strategy is shown in Fig. 2.

The goal of Stage 1 is to plan a battery temperature
trajectory over a long predictive horizon as the reference for
the BTM control in the next stage. This trajectory should have
two features. First, it should lie within a desirable temperature
range to maintain battery health and performance. Second,
on top of the first feature, it should guide the BTM and
HVAC integrated system to distribute workload to the higher
efficiency region so that energy consumption can be as low as
possible.

A. Desirable Battery Temperature Range and System
Efficiency Characteristics

A general thermal comfort zone for the lithium-ion battery
between 15◦C to 40 ◦C can be summarized based on literature

TABLE II

SYMBOL LIST FOR HIDP VARIABLES

study [19]–[21]. Inside this range, the overall capacity fading
is the slowest while the internal resistance is nearly minimum.
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TABLE III

SIMULATION SETTINGS FOR INTEGRATED MODEL INVESTIGATION

Fig. 3. Integrated system consumption dependencies: (a) on vehicle speed;
(b) on cooling power.

In practical operation, more specific and narrower temperature
ranges within this general range are used with the consider-
ation of ambient temperature. The midpoints of the specific
ranges are set as reference points.

Vehicle speed and battery heat dissipation rate of the BTM
and HVAC integrated system are the two factors in this
study which have major influences on the integrated system
efficiency, and are variable in different driving scenarios.
Therefore, the efficiency characteristics with different values
of these two factors are investigated. This is done by conduct-
ing multiple simulations of the high fidelity integrated system
model introduced in section II. A group of different Vveh and
different PH O values are used to form a meshed grid, with
each point on the grid representing a (Vveh , PH O ) pair, and
for each point a simulation is done and results recorded. This
parameter setting is given in Table. III.

The results indicate that the efficiency variation with differ-
ent Vveh and different PH O are basically independent. They are
summarized in Fig. 3. In Fig. 3(a) the curve for the variation of
Vveh is the average curve of different PH O_bat , and vice versa
for Fig. 3(b). It can be seen that the power consumption drops
monotonically with the increasing of Vveh , indicating higher
efficiencies with higher vehicle speeds. This is because when
the vehicle runs faster, the speed of the incoming air to the AC
condenser is also higher, allowing more heat exchange with
less effort. System efficiency, on the other hand, is negatively
related to battery heat dissipation rate.

After the system efficiency dependencies on vehicle speed
and battery heat dissipation rate are determined, a cost surface
can be drawn for a prediction horizon with specific speed
profiles. In this study, the urban dynamometer driving cycle is
applied. This profile is then simulated in a high fidelity PHEV
model based on the Autonomie vehicle simulation package,
and the corresponding battery power trajectory is generated
from the power controller. They are shown in Fig. 4. The speed
profile and battery power trajectory are seen as the prediction
results provided by the CAV technology. The resulting cost
surface is shown in Fig. 5. With the normalized cost surface,
the relative cost of any battery heat dissipation rate at any

Fig. 4. Vehicle speed and battery current trajectory of UDDS cycle with
PHEV20 model.

Fig. 5. Integrated system cost surface.

moment on the prediction horizon can be estimated. This
forms ηH O in (1).

For ηa/c, the dependency is solely on Vveh . It can be drawn
by choosing PH O = 0 on the surface in Fig. 5.

B. Dynamic Programming Planner Design

The cost surface derived above provides the basis for battery
temperature trajectory planning. With the goals of temperature
control and energy consumption minimization over the entire
horizon, and considering the difficulty in analytical represen-
tation of the cost and the coupling of the cooling system itself
with the battery thermal model, DP is a preferable choice for
its ability to optimize a weighted problem with a single cost
function and to solve the problem in discrete and step-wise
manner.

The optimization problem can be described as

J k = min
PH O

{Qk(Tbat , PH O ) + J k+1(Tbat , PH O )},
k ∈ [1, 2, . . . , N − 1]

J N =
�

K S
2 (Tbat − T ∗

bat )
α2, Tbat > T ∗

bat

0, Tbat ≤ T ∗
bat

Qk = K C ME(Tbat , PH O )

+
�

K S
1 (Tbat − T ∗

bat)
α1, Tbat > T ∗

bat

0, Tbat ≤ T ∗
bat

(2)

in which Tbat is the state variable and PH O is the control
variable. The characteristic recursive feature can be seen
through the expression. Notice that the problem at the far
end of the horizon, JN , has a different form from the other
steps, with the cost solely coming from the state deviation.
This reflects the temperature reference tracking requirement
of the problem. This cost will propagate backwards along the
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recursive sequence, making its influence over the horizon. The
state costs in the other steps are weighed lighter in order to
just punish limited violation.

In this study, the basic programming observes the proce-
dures represented by (3) – (5). Thermal model (1) is used to
calculate state and cost values.

In order to deploy in real time with as fast response and low
resource requirement as possible, the time-wise hierarchical
and space-wise iterative procedures are designed.

1) Time-Wise Hierarchical Procedure: The upper and lower
levels are defined according to their time scopes. At the upper
level, the whole horizon is first covered with a moderate
number of steps NU

T , each step covering a relatively long
interval DU

T . Correspondingly, the control values array covers
the entire possible control range RU

C , and the state value array
is determined by taking into account RU

C , DU
C and DU

T . After
the (NU

S ×NU
T ) dimensional state value matrix and (NU

S ×NU
T )

dimensional control value matrix are determined, the complete
DP operations described above are performed.

J k(i)

= J
�k(i, j k

opt(i)) = min
j∈[1,2,...NC ] J

�k(i, j)

Ck
opt (i)

= min
j∈[1,2,...NC ] Ck(i, j) (3)

J
�k−1(i, j)

= Qk−1(Sk−1(i), Ck−1(i, j)) + J k(i k
cb(i, j)),

where i k
cb(i, j)∈[1, 2, . . . , NS ]→∀i i ∈[1, 2, . . . , NS ],

|Sk−1(i) + �S(Sk−1(i), Ck−1(i, j)) − Sk(i k
cb(i, j))|

≤ |Sk−1(i) + �S(Sk−1(i), Ck−1(i, j)) − Sk(i i)| (4)

Str j (k)

= Sk(ic f (k)),where ic f (k) ∈ [1, 2, . . . , NS ]

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for k = 1,∀i i ∈ [1, 2, . . . , NS ],
|Tbat + �S(Tbat , Ck

opt (i
�
c f )) − Sk(ic f (k))|

≤ |Tbat + �S(Tbat , Ck
opt (i

�
c f )) − Sk(i i)|,

where i �
c f ∈ [�i �(1), . . . ,�i �(NC )] →

∀(i i, j j) ∈ {(�i �(1), 1), (�i �(2), 2), . . . , (�i �(NC ), NC )},
Qk(Sk(i �), Ck

opt (i
�)) + f k

S (i �)
≤ Qk(Sk(i i), Ck(i i, j j)) + f k

S (i i),

f k
S (i) =

�
K S

1 (Sk(i) − T ∗
bat )

α1
, Sk(i) > T ∗

bat

0 , Sk(i) ≤ T ∗
bat

,

where�i �( j)∈[1, 2, . . . , NS ]→∀i i ∈[1, 2, . . . , NS ],
|Tbat + �S(Tbat , Ck(�i �( j), j)) − Sk(�i �( j))| ≤
|Tbat + �S(Tbat , Ck(i i, j)) − Sk(i i)|
for k = 2, . . . , NS,∀i i ∈ [1, 2, . . . , NS ],
|Sk−1(ic f (k − 1))+
�S(Sk−1(ic f (k − 1)), Ck−1

opt (ic f (k − 1)))−
Sk(ic f (k))| ≤
|Sk−1(ic f (k − 1))+
�S(Sk−1(ic f (k − 1)), Ck−1

opt (ic f (k − 1))) − Sk(i i)|
(5)

Fig. 6. Principle of DP time-wise hierarchical procedure.

At the lower level, the optimization within each time step
from the upper level is regarded as a new DP sub-problem,
and a sequence of sub-problems whose number equals the
number of time intervals in the upper level are solved in a
forward order. The number of time steps of the sub-problems
is chosen according to the accuracy requirement of the output
trajectory. The ranges and intervals of the state and control grid
are independently determined for each sub-problem according
to their respective boundary state values and corresponding
optimal control values at the upper level. These can be
expressed as

Tbat (k) =
�

Tbat , k = 1

Str j (k) + E(k), k > 1

�T ∗
bat (k) =

�
Str j (k + 1), k < NU

T

T ∗
bat , k = NU

T

(6)

�Skk (k, i) = Str j (k) + RL
S (k)· i − (N L

S − 1)/2

N L
S − 1

�Ckk(k, i, j) = Ck
opt (i) + RL

C(k)· j − (N L
C − 1)/2

N L
C − 1

k∈[1, 2, . . . , NU
T +1], kk∈[1, 2, . . . , N L

T +1],
i∈[1, 2, . . . , N L

S ], j∈[1, 2, . . . , N L
C ] (7)

It should be noted that in (6), for each sub-problem after
the first one, the initial state value is relaxed by a variable
tolerance E(k). This is reflected in that, in each sub-problem
other than the last one, the final state after solving is allowed
to deviate to some degree by lowering the cost of the final step.
And the actual final state in the kkth step is used as the initial
state value for the kk + 1th step. In this way, more room is
made for energy consumption optimization without influencing
the reference tracking at the end of the whole horizon.

The time-wise hierarchical procedure is illustrated in Fig. 6.
In this study, the number of levels is two, i.e. one upper
level and one lower level. In fact, the number of levels in
the hierarchy can be arbitrarily chosen according to specific
requirements, with the same design principle.

2) Space-Wise Iterative Procedure: The basic DP proce-
dures in (3) – (5) are executed several times, with the state and
control arrays in each time dynamically adjusted according to
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Fig. 7. Principle of DP space-wise iterative procedure.

Fig. 8. HIDP flowchart.

the execution results from the previous time. The adjustments
of the state and control arrays are similar to those in the
time-wise hierarchical design as (7). The iterations for the
upper level can be expressed as

(n)Sk(i) = (n−1)Str j (i)

+RU
S ·(K I U

S )n−1· i − (NU
S − 1)/2

NU
S − 1

(n)Ck(i, j) = (n−1)Ck
opt (i)

+RU
C ·(K I U

C )n−1· j − (NU
C − 1)/2

NU
C − 1

where n ∈ [2, .., NU
I ] (8)

The iterations for the lower level are performed in a similar
manner. The principle of iteration is illustrated in Fig. 7.

It is also reflected in (8) that the iterative operations are
applied independently at both the upper level and lower level.
The iterations at the upper level are completed first, and then
the resulting state trajectory is sent to the lower level for its
iterations.

The whole flowchart for the HIDP operations is given
in Fig. 8.

3) DP Results and Benefit Analysis: The hierarchical and
iterative DP planner is executed using the UDDS speed and
power profiles shown in Fig. 4, assuming that the whole
profiles are available from the CAV technology and covered

TABLE IV

STAGE 1 HIDP KEY PARAMETERS

Fig. 9. HIDP execution results illustration.

by the horizon. Four iterations are performed at the upper
level and lower level respectively to get a demonstrative result.
The key parameters of the method are listed in Table. IV.
The dynamics at the upper level and lower level iterations are
shown in Fig. 9, matching the principles given in Fig. 6 and
Fig. 7. It can be seen that steady results can be reached after
3 and 2 iterations at the upper and lower level respectively.
For this reason, these iteration numbers are used hereafter in
simulations and real-time experiments for less computation.

The hierarchical and iterative procedures can greatly reduce
the number of calculations needed for the DP to reach a spe-
cific precision. The number of dynamic and cost calculations
needed for the complete procedures can be approximately
expressed as (9). With the settings in Table. IV, the number
is 588,708. If a single conventional DP is applied to reach
the definitions of the state and control grids after the final
iteration, the total number of calculation will be 56,836,175,
a more than 96-fold increase.

NU
I ·[NU

T ·NU
S ·(NU

C + 2)] + NU
T ·N L

I ·[N L
T ·N L

S ·(N L
C + 2)] (9)

In this study, it is assumed that the whole speed profile
and battery power trajectory for the UDDS cycle is available
for the integrated BTM and HVAC control. It should be
noted that it is very challenging for the CAV network to
make speed planning for such a length without uncertainty.
However, the uncertainty of speed prediction is not considered
in this paper since we focus on the performance of the control
strategy itself. With this assumption, the horizon in Stage 1 can
cover the whole cycle. In the real-world application, the length

Authorized licensed use limited to: San Diego State University. Downloaded on August 12,2022 at 15:03:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO AND MI: TWO-STAGE REAL-TIME OPTIMIZED EV BATTERY COOLING CONTROL 11683

TABLE V

SYMBOL LIST FOR MPC VARIABLES

of horizon can be adjusted according to the length CAV can
provide.

IV. STAGE 2 - THE BTM AND HVAC INTEGRATED MPC

The symbols used in Stage 2 is listed in Table. V.
At this stage, a controller is to be designed to track the

optimized battery temperature trajectory from Stage 1 with a
high accuracy. The controller should also enforce the energy
saving benefit reflected in the trajectory. An MPC is there-
fore a preferable choice for its state-feedback and predictive
characteristics.

A control-oriented model (COM) of the BTM and HVAC
coupled system is constructed for the MPC using the underly-
ing physics and empirical knowledge, which can be expressed
as

Tcab(k + 1) = Tcab(k) + γ1[Tint (k) − Tcab(k)]
+γ2[Tshell(k) − Tcab(k)]
+ γ3[Tain(k) − Tcab(k)]δmcab(k) + τ1

Tevap(k + 1) = γ4Tevap(k) + γ5[T ∗
evap(k) − Tevap(k)]

+γ8 PH O (k) + τ2

Tbat(k + 1) = Tbat(k) + Ts(PH I (k)

−PH O (k))/(Cbat ·mbat )

Tain(k) = γ6Tevap(k) + γ7[0.9·Tcab(k)

+0.1·Tamb(k) − Tevap(k)]δmcab(k) + τ3

PH I = Ibat
2 Rbat (k)

PH O = δmbat(k)Cair (1 − e
− K

δmbat (k)·Cair )·
[Tbat(k) − Tain(k)]

Rbat(k) =
5	

i=0

K R
T (i)·((Tbat (k)) − 273.16)i ,

KR
T = [2.7020·10−2, 1.3914·10−3, 4.3148·10−5,

3.9413·10−7, 7.8229·10−10,−5.1949·10−11]
Tint (k + 1) = Tint (k) + (Tcab(k) − Tint (k))·

Ts ·1.9753·10−4

Tshell(k + 1) = Tshell(k) + (Tcab(k) − Tshell(k))·
Ts ·1.8067·10−4 (10)

Fig. 10. Control-oriented model parameter identification.

where Tcab, Tevap and Tbat are three state variables, and δmcab,
T ∗

evap and δmbat are three control inputs. It should be noted
that, though Tint and Tshell are dynamic, they change very
slowly and have negligible influence on the system integration,
and thus are regarded as input parameters.

γ1 to γ8 and τ1 to τ3 are then identified using the data
recorded from the simulation of the high fidelity model in
section II as inputs and outputs. A combination of multiple
speed profiles is used in the simulation to get sufficient
data for the identification. A sampling time T M PC

s = 5s is
chosen as a balance between model accuracy and computation
workload of the MPC. The identification performance is shown
in Fig. 10, with the overlapping of the original and output
curves demonstrating a high accuracy. The results are given
in (11).

[γ1, γ2, . . . , γ8] = [0.2076, 0.2404, 1.775, 1.220,

0.6266, 0.8271, 0.03664, 0.001181]
[τ1, τ2, τ3] = [−1.726,−61.35, 55.17] (11)

The COM constitutes the equality constraints of the opti-
mization problem. The cost function and the inequality con-
straints are respectively given as

QM PC

=
N M PC

H	
k=1

[K C1·Pcps
A/C (k)

+K C2·Pblw
A/C (k) + K C3·(Tcab(k) − T ∗

cab(k))2

+K C4·Pbat
A/C (k) + K C5·(Tbat(k) − T ∗

bat(k))2] (12)

Pcps
A/C (k)

= Cair

ηC O P
K P1dmcab·(Tamb(k) − Tain(k))

+(β1 P2
H O + β2 PH O + β3) (13)

Pblw
A/C (k)

= K P2(β4dm2
cab + β5dmcab + β6)

P f an
A/C (k)

= β7dm3
bat + β8dm2

bat + β9dmbat + β10 (14)
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Fig. 11. Stage 2 BTM and HVAC MPC summary.

TABLE VI

KEY SIMULATION PARAMETERS

[β1, β2, . . . , β10]
= [8.6667·10−5, 2.7167·10−1,

−2.8000·10−14, 2.4156·105,−1.9742·104, 4.9318·102,

2.4096·105,−1.1160·103, 2.4688·102, 2.6724·10−14]
[K P1, K P2]
= [1.51, 1.50] (15)

Tcab ∈ [20◦C, 35◦C], Tevap ∈ [0◦C, 18◦C]
Tbat ∈ [15◦C, 41◦C], dmcab ∈ [0.001kg/s, 0.15kg/s]
T ∗

evap ∈ [3◦C, 10◦C], dmbat ∈ [10−4kg/s, 0.05kg/s]
|dmcab(k + 1) − dmcab(k)| ≤ 0.005kg/s

|T ∗
evap(k + 1) − T ∗

evap(k)| ≤ 0.5◦C

|dmbat(k + 1) − dmbat(k)| ≤ 0.002kg/s (16)

Note that T ∗
bat represents the trajectory from Stage 1.

The Stage 2 MPC is summarized in Fig. 11. In this study,
the MPC prediction horizon is set to 50s, or 10 sampling points
for the balance of tracking performance, cost optimization
result, and computation workload.

V. SIMULATION EVALUATION

The performance of the proposed sequential control strategy
is first evaluated via simulations on the PC platform. The
high fidelity integrated system model is incorporated with the
comprehensive vehicle model PHEV20 (which is a parallel
hybrid and features a 20kWh lithium-ion battery pack) from
the Autonomie vehicle simulation package. The key parame-
ters are given in Table. VI. The hierarchical and iterative
DP planner in Stage 1 is implemented with an embedded
MATLAB-function block. The integrated MPC in Stage 2 is
built with the YALMIP [23] optimization interface linking to
the internal-point optimization solver tool IPOPT [24].

The simulations are based on the UDDS driving cycle
whose speed profile and battery current trajectory is given
in Fig. 4. For performance comparison, two control groups
with different strategies are established and simulated. In the

first control group, a hysterical on/off controller is used to
confine Tbat between 35◦C and 39◦C, with δmbat set to max
when switched on. In the second group, δmbat is controlled by
a PI regulator to make the battery temperature stay constantly
at 39◦C. In both control groups, δmcab and Tevap are controlled
by the inherit PI regulators from the CoolSim model so that
Tcab strictly follows the fixed reference value. The limits of
the control variables are the same as in (16).

The simulation results are shown in Fig. 12. Tbat control,
Tcab control, and energy consumption are evaluated.

A. Battery Temperature Control Evaluation

All three strategies in the simulated scenario have achieved
the Tbat control goal defined in section III, i.e. to maintain
Tbat inside the desirable range. The ending Tbat for the first
control group is 37.8◦C, which is a profile-specific result after
the battery is first cooled to 35◦C. The ending Tbat for both
the second control group and the proposed strategy is the
reference value 39◦C. But rather than keep Tbat constantly at
39◦C, fluctuations are intentionally allowed by the proposed
strategy to follow the optimized trajectory for the energy
saving purposed.

B. Passenger Cabin Air Temperature Control Evaluation

The reference for Tcab is set constantly at 25◦C in all
simulations. In both control groups, Tcab strictly follows this
reference throughout almost the entire cycle. Tcab in the first
control group, though, takes two times longer, i.e. approxi-
mately 300s, to reach the reference value. This is because
the BTM in the first group is switched on and runs at full
power during this time, depleting the cooling capacity of the
integrated system. For the proposed strategy, an error of about
0.5◦C is allowed and the steady Tcab is 25.5◦C. This is a
tradeoff of the MPC cost optimization. The MPC cost function
determines that the tolerances for temperatures are allowed in
such a way the overall reference tracking and energy saving
can be achieved fast without compromising the passenger
comfort.

C. Energy Consumption Evaluation

For the simulated driving cycle, the proposed strategy
can save 10.61% and 9.64% of BTM and HVAC integrated
system energy consumption, and 3.26% and 2.68% of vehicle
total energy consumption, compared to the first and second
control group, respectively. The primary reason for the energy
consumption in the first control group being higher than in
the second group is that the battery is cooled to a lower
temperature at the end of the cycle.

The energy saving benefit of the proposed strategy is
reflected in its integrated system power curve in Fig. 12(c).
The hierarchical and iterative DP in Stage 1 takes advantage of
the long prediction horizon and takes all information within the
horizon into account in planning the Tbat trajectory. It is partly
reflected intuitively in that the BTM generally cools the battery
harder when the vehicle speed and efficiency are higher as
shown in Fig. 12. The integrated MPC in Stage 2 realizes and
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Fig. 12. Computer simulation and real-time experimental results: (a) battery temperature; (b) cabin air temperature; (c) BTM and HVAC power; (d) energy
consumption comparison.

extends the energy saving potential from Stage 1 by making
more accurate optimization on a shorter time scale.

VI. REAL-TIME IMPLEMENTATION

The proposed sequential control strategy is dependent on
the predicted information coming from the traffic planning
and powertrain control. Since this information is highly
time-variant and dynamic, the real-time implementation fea-
sibility is critical for the proposed strategy in realizing its
benefits. Therefore, experiments on an RCP and HIL integrated
platform are conducted to test the real-time feasibility.

The architecture of the RCP and HIL integrated plat-
form is shown in Fig. 13. The high-fidelity PHEV vehicle
model based on the Autonomie library templates is run on
the dSPACE® SCALEXIO HIL platform at a sampling rate
of 0.01s. The BTM and HVAC integrated model is also run
on this platform. Because the high-fidelity integrated system
model based on CoolSim involves a large number of encrypted
system functions which are not supported by the HIL system,
the COM with modifications is used instead. The modifications
include an external PI regulator added to the HVAC part
which controls the A/C blower fan air mass rate to allow the
passenger cabin air temperature to follow the fixed set point.
The proposed sequential controller is run on the dSPACE®

MicroAutoBox RCP platform with an updating rate of 5.0s.
The HIL and RCP platforms are connected using data cables.

The experimental architecture is designed such that the HIL
system emulates the accurate vehicle model with the BTM and
HVAC integrated system and the RCP system emulates the
onboard ECU executing the proposed control strategy, in real-
time. The test results are therefore strongly reflective of the
real-world behaviors.

Programs for the proposed control strategy are re-configured
to be compatible with the MicroAutoBox RCP hardware.

Fig. 13. Architecture of the real-time test platform.

TABLE VII

SIMULATION AND REAL-TIME TEST SPECS AND PERFORMANCE

A customized sequential quadratic programming (SQP) algo-
rithm is used to linearize the MPC problem, and FBstab linear
quadratic programming solver [25] is employed to solve the
linearized optimization problem.

The key hardware specs and computation time of the
PC simulation and the real-time experiments are recorded
in Table. VII.
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The real-time experimental results are compared with the
simulation results in Fig. 12. In general, they exhibit similar
trends as the simulation results, with the difference that the
energy saving percentage of the proposed strategy is higher
than that in the simulation. This originates from the model
choice on the HIL system. The mismatch between the identi-
fied COM and high-fidelity model, however small, exits and
impedes the performance of the COM-based MPC in Stage 2.
The influence of this mismatch disappears after using COM
as the integrated system model, allowing the MPC to reach
100% effectiveness. This phenomena indicates that the energy
saving potential of the proposed system can be higher by
further improving the COM accuracy. This is considered as
our future work.

Generally, the real-time experimental results corroborate
the simulation in demonstrating the benefits of the proposed
control strategy.

VII. CONCLUSION

In this paper, a two-stage predictive optimized control
strategy is proposed for BTM and HVAC integrated cooling
system in EVs. It achieves the goals of maintaining the battery
temperature within a desirable range, following passenger
cabin temperature set point, and decreasing the energy con-
sumption of the cooling system. It utilizes the look-ahead
preview of the speed profile and power trajectory from the
CAV technology, and obtains the benefits of long and densely
sampled horizon with low computation burden. It is validated
in both PC simulations and real-time experiments of high-
fidelity vehicle model and onboard ECU emulators. An active
air cooling architecture for the BTM and HVAC integration is
investigated, and the corresponding high fidelity simulation
model and control-oriented model are established. For the
UDDS cycle and the chosen PHEV model, up to 10.61%
energy saving can be accomplished for the integrated system
with the proposed control strategy.

Thanks to its two-stage architecture, the proposed strategy
can be further expanded to accommodate future upgrades.
A conceivable example is to include an advanced passenger
cabin air temperature optimizer in Stage 1 without changing
the MPC in Stage 2.
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