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a b s t r a c t

This paper presents a battery model with non-integer order derivatives for modeling the dynamics of a
lithium-ion battery over a large operating range. The non-integer or fractional differential model includes
a constant phase element term to approximate the non-linear dynamical behavior of the battery. The
proposed fractional differential model is an amalgamation of electrochemical impedance spectroscopy
experimental data and standard 1-resistor-capacitor electrical circuit model. The standard least squares-
based state-variable filter identification method used for continuous-time system identification is used
to estimate the model parameters and the fractional derivative coefficients of the proposed fractional
differential model. For application of modeling fractional differential order battery dynamics, the
continuous-time least squares-based state-variable filter parameter estimation approach is extended to
an instrumental variable method to be robust to (non-white) noise perturbed output measurement. The
model accuracy and model performance are validated on experimental data obtained from a lithium-ion
battery and confirm that the proposed fractional differential model is able to accurately capture the
battery dynamics over broad operating range. In comparison, the fractional differential model shows
significant improvement on data prediction accuracy compared to a conventional integer model, making
the fractional differential model suitable for monitoring battery dynamical behavior in a battery man-
agement system.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Rechargeable batteries have currently been developed to power
an ever-increasing diverse range of electrical applications in auto-
mobile starters, portable consumer devices, light vehicles, unin-
terruptible power supplies, and battery storage power stations [1].
State-of-the-art lithium-ion (Li-ion) batteries are considered as one
of the most popular types of rechargeable batteries, exhibiting
significant improvements in energy density, offering weight, size
and design flexibility, appearing a very slow loss-of-charge when
not in use and exhibiting negligible memory effect [2]. Beyond all
these dominant features, low investment and maintenance costs
drive Li-ion batteries to grow as the predominant technology for
next promising generation distributed energy storage systems
(DESS) in automotive industry [3].
In the automotive sector, Li-ion batteries are becoming a com-

mon replacement for existing lead-acid and nickel-metal hydride
batteries (NiMH) that have been widely applied in electric vehicles
(EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric
vehicle (PHEVs) [4]. Unfortunately, this replacement is a chal-
lenging task, since overheating or overcharging does cause unde-
sirable and irreversible damage to the battery. The irreversible
damages manifest itself as a degraded cell storage capacity and
reduces the useful lifetime of the battery [5].

To protect the battery, a battery management system (BMS) is
used to track a rechargeable battery (cell or battery pack) by
monitoring the state of the battery, protecting the battery from
operating outside a safe operating area and maintaining safe, reli-
able and optimal operation [6]. One of the most important func-
tions of a BMS is the software use to execute algorithms that
accurately capture the battery dynamics, and continuously estimate
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non-measurable states, such as: state of charge (SOC), state of
health (SOH) and state of power (SOP) of the battery [7].

A specific example of BMS in EV application is shown in Fig. 1,
where current (I), voltage (V), power (P) and possibly battery
temperature (T) are compared and predicted based on an internal
model to allow for system monitoring and battery fault detection
[8]. Among all above mentioned functionalities of the BMS, the
primary task of all BMS features is to monitor the state of the
battery (measurable/non-measurable). This is especially important
to track physical parameters that may change over time as the
battery cell ages and the number of total cycle increases [9].

A battery model can be described by a physics-based electro-
chemical model that uses a set of partial differential equations
(PDEs). A typical physics-based electrochemical PDE model uses an
insertion composite cathode, a solid polymer electrolyte, and a
lithium anode to account for battery dynamics underlying elec-
trochemistry principles. Such a physics-based model has the
advantage of being able to describe specific battery information in
terms of various physical processes occurring inside a battery.
Unfortunately, it suffers from the disadvantage of model uncer-
tainty for which parameter estimation techniques may be used.
Moreover, the complexity of a physics-based model may suffer
from parameter identifiability limitations, especially when only the
external information of voltage, current and temperature, is avail-
able [10].

To simplify parameter estimation and simulation calculations,
model complexity reduction can be considered via porous elec-
trodemodels that use a single particle model (SPM) or a polynomial
approximation model (PAM). A parabolic profile is utilized to
approximate the concentration within each spherical particle of
both electrodes in a PAM. Similarly, a single spherical particle,
where area is equal to the active area of the solid phase in the
SOC, SOH, SOP, …
Estimation

Data Store

Battery Management System
(BMS)

Con

Display 
and

Alarms

Fig. 1. Overall architecture of a specific example of battery man
porous electrode, is applied to represent each electrode in a SPM
[11]. Although both simplified PAM and SPM are computationally
much faster than standard physics-based models, they still have
own limitations to estimate battery performance, because simpli-
fied models do not consider all physics processes [12].

Due to relatively simple structure, equivalent circuit models
(ECM) are widely gaining popularity as another alternative model
in designing a model for the BMS. An ECM has far less model pa-
rameters (to be estimated) and the underlying ordinary differential
equation model simplifies firmware implementation. A resistor-
capacitor (RC) network model, consisting of internal resistance,
effective capacitance and equivalent potential, is widely applied in
constructing ECMmodels tomimic the phenomenological effects of
a battery [13]. There are some commonly applied RC network
models, such as 1-RC model, 2-RC model and 1-RC hysteresis
model. Although RC network models have clear electrical in-
terpretations, the internal model properties that include the finite
integer order and linearity, are not able to capture the partial de-
rivative nature of a Li-ion battery over the full operating range. The
limitations of RC network models can be observed particularly well
when comparing the structural mismatch of experimental mea-
surements of characterizing electrochemical systems [14].

One of the measurements that characterizes the dynamics of a
battery system is the electrochemical impedance spectroscopy
(EIS) technique. The EIS uses data obtained by excitation with a
small voltage and experimentally measures the impedance of the
system as a function of frequency. The frequency response of the
measured system obtained by EIS measured data is revealed to
express energy storage, battery internal states, and dissipation
properties in a Nyquist plot. As an illustration in Fig. 2, there are two
main sections in the typical Nyquist plot of a Li-ion battery over full
operating frequency range: (1) a low frequency range (1 mHz-1 Hz)
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Fig. 2. Typical Nyquist plot of a Li-ion battery cell [17].
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where a straight line characterized by the 45� is usually believed to
be caused by limitations in mass diffusion of lithium ions; (2) a
middle frequency range (1 Hz- 10 kHz), where a semi-ellipse can be
attributed to the charge transfer process, porosity of the electrodes,
and double-layer effect to represent the kinetics of the electro-
chemical battery reactions [15]. The most simple 1-RC network
ECM shows an ideal semi-circle in the EIS graph, which is not
consistent with measured experimental data displayed in Fig. 2.
Although increasing the model order by adding more RC compo-
nents may be used to improve the data fit, it suffers from a large
number of model parameters to be estimated. Therefore, it is
necessary to figure out a simple model to accurately capture the
non-linear behavior over the full operating range of typical Li-ion
battery Nyquist plot, motivated by structure mismatch and
complicated parameter estimation of integer ECMs.

An alternative and successful approach to find accurate, but still
low complexity models of battery systems is to use a fractional
differential model (FDM). A FDM has non-integer derivatives for
states can be applied to fix reconcile discrepancies between
structure complexity and estimation accuracy in common ECMs.
FDMs are able to explain inherent fractional derivative properties
due to diffusion dynamics, memory hysteresis, and mass transfer of
Li-ion batteries, thus they have ability to exhibit better accuracy
with fewer parameters, compared with conventional integer ECMs
[16].

There are various parameter identification approaches that can
be employed to determine the unknown parameters of a FDM for a
battery system. A recently published parameter estimation method
[17] has shown to provide good results, but requires a large number
of time consuming integration and convolution calculations. In
addition, this method requires noise-sensitive identification to es-
timate the fractional derivative value. Although alternate indirect
identification method of discrete-time (DT) model parameters can
be used to solve the above issues, information on fast dynamics
may be lost due to sampling, whereas relatively too small sampling
time will result to numerical problems that limits DT model iden-
tification [18]. Furthermore, estimation of model parameters may
be sensitive to initial and noise conditions and limits the potential
of real-time applications [19]. In order to overcome disadvantages
of DT method, a direct CT system identification can been applied,
because it can provide good insight of system properties and avoid
information loss due to undesired high sensitivity issues [20].

Compared with conventional least squares (LS) identification
methods, instrumental variable (IV) methods have the advantages
of providing consistent parameter estimates when the noise in real
applications can not comply with a normal distribution and rational
spectral density [21]. As one of the available IV methods, the
simplified refined instrumental variable for continuous-time sys-
tem identification (SRIVC), is able to exhibit statistically consistent
and asymptotically efficient parameter estimates in the presence of
white measurement noise [22]. The main reason of selecting
instrumental variable state-variable filter (IVSVF) method is
because of its ability to provide consistent estimate results for non-
white noise structure in Li-ion experimental measurement cases
[23].

Based on the premise of using the advantage of CT identification
for the estimation of model parameters, the main purposes of this
paper is to show the following contributions: (1) a FDM that has
fewer estimation parameters than a physics-based electrochemical
model, can be applied to accurately mimic complex input/output
dynamic behavior of an electrochemistry-based system inside a Li-
ion battery; (2) a CT system identification approach can be used to
estimate model parameters of a FDM in a Li-ion battery; (3) the use
of a state-variable filter (SVF) to formulate a parameter estimation
problem that is less susceptible to noise on the fractional de-
rivatives of the input/output signals of the model; (4) the use of a
standard least squares based state-variable filter (LSSVF) method
for the estimation of FDM parameters; (5) the further improvement
of the LS parameter estimates via an instrumental variable (IV)
method to estimate parameters of the FDM.
2. Fractional differential systems

Fractional differential systems have been widely applied in
various application fields, such as physical chemistry, electricity,
electronics, mechanics, automatic control, robotics and signal
processing, because their dynamics behaviors can be described by
differential equations involving fractional derivatives functions
(fractional differential equations) [24]. For most dielectric/insu-
lating materials in electrical application, the current and the
voltage across the capacitor are non-linear related: the current is
proportional to time non-integer derivative of the voltage across
the capacitor [25]. Also, unlike the well-known conventional
”integer” methods, the non-integer derivative allows an explana-
tion of mass transport, diffusion, and memory in dielectrics [26].
For a battery system, especially Li-ion battery system, the fractional
differential system is applied in capturing the electrical dynamics
including mass transport and charge transfer process in the elec-
trolyte, mass diffusion and porosity in solid electrodes [27].
2.1. General linear fractional differential system equation

A general linear fractional differential system can be expressed
by a fractional differential equation of the following form

yðtÞ þ a1D
a1yðtÞ þ…þ anDanyðtÞ

¼ b0D
b0uðtÞ þ b1D

b1uðtÞ þ…þ bmDbmuðtÞ (1)

where ðaj; biÞ2ℝ2, differentiation orders a1 <a2 <…<an,
b0 <b1 <…< bm, and ai; bi2ℝþ (restricted to arbitrary positive
real-number value). The fractional differentiation operator for real-
number value of awhen a takes a non-integer value can be defined
as [28]

Da ¼
�
d
dt

�a

; ca2ℝþ (2)

The classical form of fractional derivative in Riemann-Liouville
(R-L) sense to a function f ðtÞ is commonly defined by Ref. [25]
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Daf ðtÞ ¼
�
d
dt

�QaS 1
GðQaS� aÞ

Zt

0

f ðtÞ
ðt � tÞa�PaR

dt (3)

where ca2ℝþ, t >0, and gamma function GðgÞ for every g 2ℝþ

can be defined via a convergent improper integral:

GðgÞ ¼
Z∞
0

zg�1e�z dz (4)

It should be noted that in the above equations the floor function
P:$R represents the largest integer smaller than or equal to a, and the
ceiling function Q:$S defines the smallest integer larger than or equal
to a. An alternative definition called Grünwald-Letnikov (G-L) al-
lows the derivative a non-integer value instead of the integral is
considered as the following definition [26]

Daf ðtÞ ¼ lim
h/0

ð�1Þa
ha

X
�

t�a
h

�

j¼0

ð�1Þj
�
a
j

�
f ðt þ jhÞ (5)

where ½,� donates the integer part. The Laplace transform of a-th
derivative (a2ℝþ) of an arbitrary signal f ðtÞ

L fDaf ðtÞg ¼ saFðsÞ; if f ðtÞ ¼ 0 ct � 0 (6)

can then be generally applied as a more concise algebraic tool to
describe fractional differential systems [29]. Thus this allows to
rewrite the fractional differential equation (1), with both input
signal uðtÞ and output signal yðtÞ equal to 0 when t ¼ 0 (zero initial
conditions), into a transfer function form

GðsÞ ¼ b0sb0 þ b1sb1 þ/þ bmsbm

1þ a1sa1 þ/þ ansan
(7)

The transfer function GðsÞ in (7) is applied in the continuous-
time identification of the FDMs throughout this paper.
2.2. Numerical analysis of fractional derivatives

The reversed Grünwald-Letnikov (reversed G-L) definition in
the similar form with (5)

Daf ðtÞ ¼ lim
h/0

1
ha

X
�

t�a
h

�

j¼0

ð�1Þj
�
a
j

�
f ðt � jhÞ (8)

is carried out to simulate the system response to an arbitrary input
signal in time-domain analysis of a fractional derivative system. The
closed-form numerical solution to the general fractional differential
equation (1) in reversed G-L form can be computed by the recursive
approach [30]

yt ¼ 1Pn
i¼0

ai
hai

0
BB@ut �

Xn
i¼0

ai
hai

X
�
t � a
h

�

j¼1

wðajÞ
j yt�jh

1
CCA (9)

where h represents the step-size in computation. The wjðaÞ in the
above solution (9) can be evaluated recursively from
wa
0 ¼ 1;wa

j ¼
�
1� aþ 1

j

�
wa

j�1; j ¼ 1;2;… (10)

The above recursive method can be applied to obtain numerical
approximation of fractional derivative input and output signals. The

signal buðtÞ is calculated by using (8) substituting ð�1Þa
�
a
j

�
¼ wa

j

and the time response under the signal uðtÞ can be consequently
obtained. Since the recursive approach is based on the fixed-step
computation, the step-size h needs to be selected with special
care to improve the accuracy of the simulation. Therefore, it is
necessary to take sometime to validate the computational results
by decreasing step-size h in a gradual way until the simulation
results have no variation.

3. Continuous-time system identification

The direct continuous-time (CT) system identification has been
analyzed and compared with indirect discrete-time (DT) system
identification methods in battery applications [31].

3.1. Advantages of continuous-time over discrete-time model
identification

DTmodel identification based on sampled input/output data set
has been successfully applied in estimation of CT dynamics pro-
cesses by digital computers and data acquisition systems (DAS).
However, the difficulties or limitations of using DT model identi-
fication in Li-ion battery applications have been encountered when
applying various sampling rate (or sampling interval). High sam-
pling rate can lead to numerical problems due to discrete poles
constrained in small area close to the unit circle boundary of the z-
plane, whereas low sampling rate is not able to retain all the system
information [32]. Since Li-ion battery system consists of both fast
and slow dynamic modes of behavior, which reveals a typical stiff
system, the selection of sampling rate (sampling interval) needs to
be treated with excessive care [33]. On the one hand, the slow
sampling (large sampling interval) will lead to the information loss
due to the existence of the fast dynamics. On the other hand, the
rapid sampling (small sampling interval) is able to accurately cap-
ture the fast system dynamic, however, this will result in the in-
accuracy of parameter estimation because of ignorance of the slow
dynamics in real system [34]. Moreover, the numerical precision of
DT system is more inclined to be affected by the estimation pa-
rameters and the discrete pole location that is located near the
stability boundary within limited storage resolution [35]. As the
sampling rate increases, the disturbance sensitivity of capacitance
and resistance values increases the quasilinear utility in the RC
networks, which ultimately leads to inaccurate results of the sys-
tem identification [36].

The direct CT system identification has been thoroughly studied
in contrast with the indirect DT identification [37]. When applied to
model identification and parameter estimation in using data
collected when choosing the appropriate sampling rate, the CT
identification methods have particular advantages over well-
established DT methods for system modeling and control system
design: (1) the CT identification methods are preferable to repre-
sent underlying dynamic system in better physical insight, exhibit
the preservation of a priori knowledge, and show built-in capability
to deal with the situation of non-uniformly sampled data; (2) the
CT approach includes inherent filtering, which not only can
significantly improve the statistical efficiency, but also makes more
robust tomeasurement noises; (3) the CT identificationmethod can
efficiently avoid discretization that induces undesired high
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sensitivity issues, therefore it can result in better identification
performance of the stiff system [38]. Therefore, considered all
above advantages, the direct CT identification approach is utilized
to the parameter identification throughout the paper.
3.2. Conventional least squares-based state-variable filter method

In order to consider CT parameter estimation of the FDM in (1)
or transfer function GðsÞ in (7), it is assumed that measurable
output signal yðtÞ is corrupted by an additive measurement white
noise eðtÞ

yðtÞ ¼ y0ðtÞ þ eðtÞ (11)

where y0ðtÞ is hypothetical noise-free deterministic system output.
It is worth noting that the input signal uðtÞ and the output signal
yðtÞ are considered to be related with the fractional differential
equation (1). Therefore, the equation error is then expressed as the
following form [39]

εðtÞ ¼ yðtÞ � 4ðtÞTq (12)

where the regressor vector is defined as

4ðtÞ ¼
h
Db0uðtÞ … DbmuðtÞ � Da1yðtÞ … � DanyðtÞ

iT
(13)

and the parameter is denoted by the vector

q ¼ ½b0 b1 … bm a1 a2 … an�T (14)

A mathematical approach to determine parameter vector q is
minimizing L2 norm of εðtÞ

J ¼
ZT
0

ðεðtÞÞ2dt (15)

In the present case, output signal yðtÞ is highly linear to the
parameter vector q, thus J is minimized analytically in the following
least squares (LS) estimate

bqLS ¼
0
@ZT

0

4ðtÞT4ðtÞdt
1
A

�1 ZT
0

4ðtÞTyðtÞdt (16)

In order to numerically compute the LS estimate in (16), the
discretization of fractional derivative input and output signals is
needed to transfer continuous functions and equations into discrete
counterparts. Considering time digitized regression vector 4ðkTsÞ,
time instant Ts and k ¼ 1;2;…;N based on N data points, the re-
gressor matrix F can be then formulated as

F ¼ ½4ðTsÞ 4ð2TsÞ … 4ðNTsÞ�T (17)

and the digitized system output yðkTsÞ can be formed as a column
vector to describe output matrix Y in a similar way. The CT LS
parameter estimation can be computed via

bqLS ¼ �
FTF

��1
FTY (18)

Because CT stochastic processes are always related with the
white noise and its derivatives, parameter estimation normally
would encounter difficulties: small perturbations that contami-
nating on the coefficient or the initial condition of the differential
equation would finally result in the perturbations of the solution
[40]. Therefore, special care is needed in parameter estimation of
the fully stochastic FDM CT model in order to reduce the noise/
deviation on the input/output data in order to alleviate the practical
difficulties. A traditional and effective approach to estimate co-
efficients of (fractional order) CT model is to use a minimum-order
SVF filter to both sides of (12) [41]. From the signal analysis
perspective, the SVF consisted of multiple band-pass filters can be
applied to gain differentiation behavior in low frequency part, and
to filter (smooth) noise/perturbation effect in high frequency part.
A typical SVF filter is chosen with operator model LðsÞ in the
following form [42]

LðsÞ ¼ 1
EðsÞ ¼

�
g

sþ g

�n

(19)

where n is the highest system order, and g represents the cut-off
frequency of the SVF. It should be noted that since the cut-off fre-
quency g is selected to emphasize the filter frequency band and
define the bandwidth of the filter, the recommended g value in
general is chosen to be slightly larger than the frequency band-
width of the identified system [32]. Hence, filtered input uf and
output yf can be obtained at the output of the filters (19)

uf ðtÞ ¼ LðsÞuðtÞ (20)

and

yf ðtÞ ¼ LðsÞyðtÞ (21)

By using the filters defined in (19), the fractional equation (1)
can be extended to the (fractional) derivatives form as to formu-
late the standard least squares-based SVF (LSSVF) method

yf ðtÞ þ a1D
a1yf ðtÞ þ…þ anDanyf ðtÞ

¼ b0D
b0uf ðtÞ þ b1D

b1uf ðtÞ þ…þ bmDbmuf ðtÞ (22)

Instead of minimizing the L2 norm of εðtÞ as in (12), the L2 norm
of εf ðtÞ is now minimized based on the filtered fractional equation
in (22)

εf ðtÞ ¼ yf ðtÞ � 4f ðtÞTq (23)

where the regressor vector is composed of the filtered input/output
signals as the following form

4f ðtÞ ¼
h
Db0uf ðtÞ … Dbmuf ðtÞ � Da1yf ðtÞ … � Danyf ðtÞ

iT
(24)

Again, the same discretization approach is applied to numeri-
cally compute the (fractional) derivatives of the input/output sig-
nals to estimate parameters. Combined a time digitized filtered
regression vector 4f ðkTsÞ with the filtered system output yf ðkTsÞ
column vector Yf , time instant Ts and k ¼ 1;2;…;N, the CT LSSVF
estimate can be formulated as

bqLSSVF ¼
�
FT

f Ff

��1
FT

f Yf (25)

where

Ff ¼
h
4f ðTsÞ 4f ð2TsÞ … 4f ðNTsÞ

iT
(26)
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3.3. Instrumental variable-based state-variable filter method

The basic LSSVF method has some attractive properties and
include the analytical solution that is relatively easy to compute,
low computational complexity, and quite good robustness with
respect to noise. However, it is well known the resultant parameter
estimates are asymptotically biased in the presence of non-white
equation noise on the regression equation. The main reason
comes from the fact that the filtered regression vector 4f ðkTsÞ is
correlated with the filtered noise term εf ðkTsÞ [37]. As a traditional
variant of the LSmethod, the instrumental variable (IV) method can
deliver unbiased estimates and also has the advantage of relying on
linear regression techniques.

The primary principle of the IV method relies on the so-called
instruments generally obtained from a parallel model yIVf . Hence,
the most common IV identificationmethod uses an auxiliary model
in order to generate noise-free output estimate

4IV
f ðtÞ ¼

h
Db0uf ðtÞ … DbmuðtÞ � Da1yIVf ðtÞ … � DanyIVf ðtÞ

iT
(27)

The IV vector should satisfy the following as

E
h
4IV
f ðtÞ4T

f ðtÞ
i
is non singular (28)

and

E
h
4IV
f ðtÞεf ðtÞ

i
¼ 0 (29)

where E½,� stands for the mathematical expectation. The
continuous-time instrumental variable-based filter (CT IVSVF)
estimation can be given as

bqIVSVF ¼
�
FIVT

f Ff

��1
FIVT

f Yf (30)

where

FIV
f ¼

h
4IV
f ðTsÞ 4IV

f ð2TsÞ … 4IV
f ðNTsÞ

iT
(31)

and the column vector Yf is the same as (26). The implementation
of CT IVSVF parameter estimation is summarized in the overall flow
chart as shown in Fig. 3.

It should be noted that the simplified refined instrumental
variable for continuous-time system identification (SRIVC) has
been introduced to solve the problem of formulating unbiased
parameter estimates. Although the SRIVC method is a powerful IV
method for unbiased parameter estimation with proven statistical
efficiency properties, the parameter estimation requires detailed
modeling of the noise filter to obtain the statistical efficiency [43].
The prefilters and the highly colored noise present on the (filtered)
Li-ion battery experimental measurements may require complex
noise filters to achieve this statistical efficiency of SRIVC and
require additional computations that can be avoided by choosing
an instrument that is not optimal in terms of variance properties.
Therefore, the above proposed IVSVF identification approach is
selected to estimate parameters and compare performance/accu-
racy with LSSVF estimation method throughout this paper,
knowing that the measurement noise will not be white in Li-ion
battery system experimental data.
4. Continuous-time fractional differential model for a
lithium ion battery

ECMs have been widely applied in BMS and compared with
twelve commonly used ECMs, the first-order RC model (1-RC) is
considered to be the best choice for Li-ion battery in terms of model
complexity, model accuracy, and generalizability to multiple cells
[44]. However, simple elements, such as capacitances, resistances,
inductances or convective diffusion impedance, are not able to
describe the experimental frequency dispersion result of a solid
electrode/electrolyte interface [45]. A constant-phase element
(CPE) can be generally applied to describe the capacitance disper-
sion of the frequency dispersion that is normally ascribed to
distributed surface reactivity, electrode porosity, surface in-
homogeneity, roughness or fractal geometry, current and potential
distributions associated with electrode geometry instead of an
ideal capacitor. Therefore, CPEs are used extensively in ECMs and
the derived FDM structure is shown in Fig. 4. From the description
in Fig. 4, it is worth mentioning that an ohmic resistor (R0) can be
applied to depict resistive impedance, a parallel circuit composed of
a resistor (R1) and a CPE, is used to represent the diffusion dynamic
behavior.

The CPE is an equivalent electrical circuit component that ap-
pears currently in modeling the behavior of the imperfect di-
electrics (partially capacitive and resistive) [46]. The electrical
impedance can be expressed in terms of capacitance-like param-
eter C1 and the differentiation order a (a2ℝþ, 0 <a<1)

ZCPEðsÞ ¼
1

YCPEðsÞ
¼ 1

C1Sa
(32)

where the CPE admittance YCPEðsÞ, C1 and a are frequency inde-
pendent. Since constant phase is always �90�, the CPE as a circuit
parameter is exhibiting limited behavior: an ideal capacitor for
a ¼ 1, and a pure resistor for a ¼ 0 [47]. In this case (32), although
CPE can be used as an extremely flexible fitting parameter to fit EIS
data, it is not able to describe themeaning in terms of time constant
distribution. The CT transfer function of the first-order FDM
depicted in Fig. 4 can be derived as

HðsÞ ¼ VOCV ðsÞ � V0ðsÞ
IðsÞ ¼ VðsÞ

IðsÞ ¼ R0 þ
R1

1þ R1C1sa
(33)

where VOCV ðsÞ ¼ L fvOCV ðtÞg, V0ðsÞ ¼ L fv0ðtÞg, IðsÞ ¼ L fiðtÞg, and
L f,g is the notation for the Laplace transform.

The following relationship can be obtained from the whole
circuit shown in Fig. 4

v0 ¼ vOCV � v1 � iR0 (34)

where i, v0 and R0 are the current, output voltage, and ohmic
resistance, vOCV is the open circuit voltage (OCV), v1 and t ¼ R1C1
are the voltage and time constant of an RC circuit, respectively. The
output function (34) consisted of state variable v1, vOCV , and implicit
determining factor input current i.

All coefficients are replaced by the unknown circuit parameters,
then the transfer function of first-order FDM (33) can be rewritten
as

HðsÞ ¼ VðsÞ
IðsÞ ¼ b0 þ b1sa

1þ a1sa
(35)

where the identified parameters are
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Fig. 4. Structure of the fractional differential model for Li-ion batteries.

Table 1
Specific information of the Li-ion polymer battery under test.

Characterization Lithium-ion polymer

Charge/discharge capacity 40.83/40.61 Ah
Nominal voltage 3.7 V
Minimum discharge voltage 2.7 V
Maximum charge voltage 4.2 V
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b0 ¼ R0 þ R1 (36)

b1 ¼ R0R1C1 (37)

a1 ¼ R1C1 (38)

The above transfer function (35) can be described in a fractional
differential equation form as

ð1þ a1s
aÞVðsÞ ¼ ðb0 þ b1s

aÞIðsÞ (39)

The current input iðtÞ and voltage output vðtÞ ¼ vOCV ðtÞ � v0ðtÞ
related with (39) can then be expressed as the following regression
form

vðtÞ ¼ 4FDMðtÞTqFDM (40)

where the revised regression vector 4FDMðtÞ is defined as
4FDMðtÞ ¼ ½ iðtÞ DaiðtÞ � DavðtÞ �T (41)

and the parameters are denoted by the vector

qFDM ¼ ½ b0 b1 a1 �T (42)

In most practical situations, the measured terminal battery
voltage is usually the noise-free case, and it is actually corrupted by
additive noises. Therefore, the complete equation for the battery
system, with an equation error εðtÞ, can bewritten in the regression
form

vðtÞ ¼ 4FDMðtÞTqFDM þ εðtÞ (43)

Low-pass first-order SVF LðsÞ ¼ g
sþg, as the most simple form in

(19), is then applied to smoothen (filter) the time-derivative of
current input and voltage output. Then, the filtered equation error
can be defined as to estimate parameters

ε
�
f ðtÞ ¼ vf ðtÞ � 4�

FDMðtÞTqFDM (44)

where the filtered regression vector can be given by

4�
FDMðtÞ ¼

h
if ðtÞ Daif ðtÞ � Davf ðtÞ

iT
(45)

Subsequently, in order to validate the accuracy of the estima-
tion, the fitness function f ðtÞ can be defined as follows



Fig. 5. Battery characterization and validation experiments.
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f ðtÞ ¼
������v0ðtÞ � vsimðtÞ

������2
2

(46)

where v0ðtÞ is the tested battery terminal voltage and vsimðtÞ is the
simulated battery voltage.
5. Model parameter identification and experimental results

The battery characterization experiments are conducted in or-
der to estimate parameters and validate our proposedmodel of a Li-
ion polymer battery cell.
Fig. 6. Relationships between model accuracy and fractional order.
5.1. Battery tests

Experiment characterization data of Li-ion polymer battery is
continuously measured at room temperature (22e25� C) in the
testing workbench. The specific information of the Li-ion polymer
battery under test is shown in Table 1. As shown in Fig. 5a, a static
capacity test, an OCV (open circuit voltage) test, a HPPC (Hybrid
Pulse Power Characterization) test, and a UDDS (Urban Dyna-
mometer Driving Schedule) test are consecutively conducted in the
characterization tests. It should be noted that the sampling rate is
1 Hz in all characterization experiments.

There are three charge/discharge cycles in the static capacity
test. The Li-ion polymer battery is charged at 0.5C (constant cur-
rent) in each cycle, until the battery terminal voltage can reach the
maximum charge voltage (4.2 V). After that, the battery terminal
voltage is maintained at the maximum value 4.2 V before the



Fig. 7. Voltage values and errors across all UDDS tests.

Fig. 8. Detailed voltage values and error between 0 s and 2000 s.
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charge rate is below 1/20C. Then, the battery is discharged at a
constant rate 0.5C before the battery terminal voltage reaches the
minimum discharge voltage (2.7 V). Moreover, 1 h rest (0C) is then
set after each charge/discharge cycle. The average value of all three
charge/discharge cycles can be used to calculate the charge/
discharge capacity.

As shown in Fig. 5b, the charge/discharge OCV-SOC experi-
mental curves are measured at 10% SOC step with 0.5C charge/



Table 2
RMSE, MAE and MAD of model voltage estimation in whole UDDS validation.

LSSVF IM LSSVF FDM IVSVF IM IVSVF FDM

RMSE [mV] 16.87 12.88 16.30 9.15
MAE [mV] 15.39 11.70 14.92 8.20
MAD [mV] 0.57 0.48 0.49 0.37

Y. Jiang et al. / Energy 135 (2017) 171e181180
discharge rate, and there is a 5 h rest between two neighboring
charge/discharge cycles. As can be seen in Fig. 5b, the discharge
OCV curve is slight lower than the charge curve at certain SOC range
due to rate-dependent hysteresis. When SOC ¼ 20%, the deviation
between charge and discharge OCV curves reaches the maximum
value 22.6 mV, as shown in small figure in Fig. 5b. It is worth noting
that for the purpose of simplicity in calculation, the average value of
the measured charge/discharge OCV-SOC curves is applied in the
model identification.

Then, a HPPC test profile designed to measure dynamic power
capability during both discharge and charge pulses is used inmodel
parameter estimation. The HPPC test begins at 100% fully charged
Li-ion battery and terminates after completing the final profile at
0% SOC with 2% SOC discharge step and 1 h rest between two
consecutive charge/discharge cycles to allow the cell to return to a
charge equilibrium condition before applying the next profile. The
actual current input of one specific charge/discharge cycle of HPPC
profile is shown in Fig. 5c. The HPPC current characterization profile
and voltage response at SOC¼ 50% is recorded to establish the cells
OCV behavior, which are enlarged in Fig. 5d.

UDDS datasets that can be used to be able to imitate the battery
load of a car to represent city driving conditions at the specific
temperatures, and voltage response records are used as model
validation datasets in order to assess the simulated models. More
procedure details can be found in our previous work [31].

5.2. Pre-determination of non-integer order

The fitness function f ðtÞ that describes the deviation between
the simulated model output and experimental battery terminal
voltage, is used to measure the model accuracy and validate the
model performance. 1 Hz cut-off frequency for a low-pass filter is
selected in order to pre-filter the input/output signals. As a matter
of fact, the non-integer order a affects the model accuracy/perfor-
mance. For this research, the fractional order a is selected from 0.01
to 1.0 with the step length 0.01. The identification process is per-
formed at each a value, and the results are shown in Fig. 6. As can be
seen from Fig. 6, the fitness function value typically changes when
the value of the fractional order varies. It should be mentioned here
that when the fractional orders are chosen from 0.01 to 0.35, the
values of the fitness function are beyond the range compared with
other selected fractional orders. Hence, the range of fractional order
shown in Fig. 6 is chosen from 0.36 to 1 with step size 0.01. The
model when the fractional order a¼ 0.64 obtains the smallest value
and obtains the best model accuracy/performance under HPPC test
cycles. Thus, the optimized fractional order a¼ 0.64 is chosen in the
FDM to validate performance throughout this paper.

5.3. Validation results

In order to validate the model accuracy/performance of the
aforementioned FDM, the optimized FDM (when a ¼ 0.64) is used
to compare with same structure first-order integer model (IM) in
(35) (when a ¼ 1) in both CT LSSVF and CT IVSVF system identifi-
cation. The 1 Hz cut-off frequency is also selected as pre-filter SVF
through the validation process. The validation result for UDDS test
is shown in Fig. 7. The simulated and experimental battery voltage
outputs, and voltage errors between the simulated models and
experiment data are plotted in Fig. 7. And the zoom-in range results
between 0 s and 2000 s are shown in Fig. 8. The results show that
(1) the IM estimated by LSSVF method has the largest overall error
compared with other estimated models; (2) the FDMs offers sub-
stantially better performance then IMs in both LSSVF and IVSVF
methods; (3) the IVSVF identification method has better perfor-
mance over LSSVF method in both FDM and IM, because the recent
presented IV method is less correlated (more independent) to the
equation error; (4) FDM applied by IVSVF identification method
appears the best performance compared with other estimated
models under UDDS profile, which mainly consists of high fre-
quency contents and is closer to the actual working conditions.

The root-mean-square error (RMSE), mean absolute error (MAE)
and median absolute deviation (MAD) of above mentioned esti-
mators over the full experimental period are chosen to list in
Table 2. It validates that the proposed FDMs exhibit better overall
performance and the explicitly RMSE, MAE and MAD of the FDM
applied IVSVF system identification method is substantially smaller
than other estimated models. It can be concluded from the above
analysis that the proposed FDM applied IVSVF method character-
izes the Li-ion battery more accurately and shows better perfor-
mance than other models.

6. Conclusion

In this paper, a fractional differential model (FDM) and a
parameter estimation strategy is proposed to approximate the non-
linear dynamic behavior of a Li-ion battery over a large operating
range. The FDM is structured with a parallel circuit consisting of a
constant phase element (CPE) and an ohmic resistor to resemble
circuit-based Li-ion battery models. The parameter estimation
strategy is formulated in continuous-time (CT) to allow direct
estimation of parameters related to the fractional derivatives used
in the model.

Compared with standard discrete-time (DT) methods, the pro-
posed CT identification method is able to consistently estimate the
parameters of the FDM and reproduce battery output response over
a wide operating range. This is achieved by fixing the value of
fractional differential order, and then use a state variable filter (SVF)
to pre-filter and smoothen the time-derivatives of current and
voltage signals. Parameter estimates are then obtained via both a
standard least squares (LS) minimization and an iterative instru-
mental variable (IV) method to improve robustness against colored
noise on the measured current and voltage signals.

The proposed FDM is a combination of the EIS experimental
data and the 1-RC ECM model that has the similar structure with
the commonly used RC model. Battery characterization experi-
ments under different conditions are conducted in order to verify
the accuracy and the performance of the proposed model. The
comparison results indicate that CT IV identification methods show
that smaller root-mean-square error (RMSE), mean absolute error
(MAE), and median absolute deviation (MAD) compared to a
standard CT LS optimization method.

Via experimental verification it is shown that the proposed FMD,
where parameters are estimated via CT IV identification methods,
can accurately capture the voltage and current signals over broad
operation range of the Li-ion battery. The FDM is shown to provide
better accuracy and prediction of battery terminal signals than the
conventional linear differential equation models with integer de-
rivatives. It is anticipated that the optimized FDM via CT IV
parameter estimation method can be easily adapted in a battery
management system to estimate and predict the battery dynamics
for state of charge (SOC) and state of health (SOH) monitoring.



Y. Jiang et al. / Energy 135 (2017) 171e181 181
References

[1] Armand M, Tarascon J-M. Building better batteries. Nature 2008;451:652e7.
[2] Kanchev H, Lu D, Colas F, Lazarov V, Francois B. Energy management and

operational planning of a microgrid with a PV-based active generator for
smart grid applications. IEEE Trans Industrial Electron 2011;58:4583e92.

[3] Deng Z, Yang L, Cai Y, Deng H, Sun L. Online available capacity prediction and
state of charge estimation based on advanced data-driven algorithms for
lithium iron phosphate battery. Energy 2016;112:469e80.

[4] Felgenhauer MF, Pellow MA, Benson SM, Hamacher T. Evaluating co-benefits
of battery and fuel cell vehicles in a community in California. Energy
2016;114:360e8.

[5] Xing Y, Ma EWM, Tsui KL, Pecht M. Battery management systems in electric
and hybrid vehicles. Energies 2011;4:1840e57.

[6] Xia B, Mi C. A fault-tolerant voltage measurement method for series con-
nected battery packs. J Power Sources 2016;308:83e96.

[7] Elsayed AT, Lashway CR, Mohammed OA. Advanced battery management and
diagnostic system for smart grid infrastructure. IEEE Trans Smart Grid 2016;7:
897e905.

[8] Li Y, Wang C, Gong J. A combination kalman filter approach for state of charge
estimation of Lithium-ion battery considering model uncertainty. Energy
2016;109:933e46.

[9] Zhao X, de Callafon RA. Modeling of battery dynamics and hysteresis for po-
wer delivery prediction and SOC estimation. Appl Energy 2016;180:823e33.

[10] Santhanagopalan S, Guo Q, Ramadass P, White RE. Review of models for
predicting the cycling performance of Lithium-ion batteries. J Power Sources
2006;156:620e8.

[11] Mastali M, Samadani E, Farhad S, Fraser R, Fowler M. Three-dimensional
multi-particle electrochemical model of LiFePO4 cells based on a resistor
network methodology. Electrochimica Acta 2016;190:574e87.

[12] Zhang D, Popov BN, White RE. Modeling lithium intercalation of a single
spinel particle under potentiodynamic control. J Electrochem Soc 2000;147:
831e8.

[13] Xiong R, Sun F, Chen Z, He H. A data-driven multi-scale extended Kalman
filtering based parameter and state estimation approach of Lithium-ion
polymer battery in electric vehicles. Appl Energy 2014;113:463e76.

[14] He H, Xiong R, Fan J. Evaluation of Lithium-ion battery equivalent circuit
models for state of charge estimation by an experimental approach. Energies
2011;4:582e98.

[15] Jossen A. Fundamentals of battery dynamics. J Power Sources 2006;154:
530e8.

[16] Xu J, Mi CC, Cao B, Cao J. A new method to estimate the state of charge of
Lithium-ion batteries based on the battery impedance model. J Power Sources
2013;233:277e84.

[17] M. Eckert, L. Klsch, S. Hohmann, Fractional algebraic identification of the
distribution of relaxation times of battery cells, in: 2015 54th IEEE Conference
on Decision and Control (CDC), pp. 2101e2108.

[18] Hu Y, Yurkovich S. Linear parameter varying battery model identification
using subspace methods. J Power Sources 2011;196:2913e23.

[19] Lee S, Kim J, Lee J, Cho BH. State-of-charge and capacity estimation of Lithium-
ion battery using a new open-circuit voltage versus state-of-charge. J Power
Sources 2008;185:1367e73.

[20] Rao GP, Unbehauen H. Identification of continuous-time systems. IEE Proc -
Control Theory Appl 2006;153:185e220.

[21] Young PC, Garnier H, Gilson M. Refined instrumental variable identification of
continuous-time hybrid box-Jenkins models. In: Garnier H, Wang L, editors.
Identification of continuous-time models from sampled data, advances in
industrial control. Springer London; 2008. p. 91e131. http://dx.doi.org/
10.1007/978-1-84800-161-9_4.

[22] Schorsch J, Garnier H, Gilson M, Young PC. Instrumental variable methods for
identifying partial differential equation models. Int J Control 2013;86:
2325e35.

[23] Laurain V, Gilson M, Tth R, Garnier H. Refined instrumental variable methods
for identification of LPV BoxJenkins models. Automatica 2010;46:959e67.

[24] Oustaloup A, Levron F, Mathieu B, Nanot FM. Frequency-band complex non-
integer differentiator: characterization and synthesis. IEEE Trans Circuits Syst
I Fundam Theory Appl 2000;47:25e39.
[25] Petr I. Fractional-order nonlinear systems, nonlinear physical science. Berlin,

Heidelberg: Springer Berlin Heidelberg; 2011.
[26] Monje CA, Chen Y, Vinagre BM, Xue D, Feliu V. Fractional-order systems and

controls, advances in industrial control. London: Springer London; 2010.
[27] Jiang Y, Zhao X, Valibeygi A, de Callafon RA. Dynamic prediction of power

storage and delivery by data-based fractional differential models of a lithium
iron phosphate battery. Energies 2016;9:590.

[28] Kaczorek T, Rogowski K. Fractional linear systems and electrical circuits,
volume 13 of studies in systems, decision and control. Cham: Springer In-
ternational Publishing; 2015.

[29] Kexue L, Jigen P. Laplace transform and fractional differential equations. Appl
Math Lett 2011;24:2019e23.

[30] A. Tepljakov, E. Petlenkov, J. Belikov, FOMCON: fractional-order modeling and
control toolbox for MATLAB, in: mixed design of integrated circuits and sys-
tems (MIXDES), 2011 Proceedings of the 18th international conference, pp.
684e689.

[31] Xia B, Zhao X, de Callafon R, Garnier H, Nguyen T, Mi C. Accurate Lithium-ion
battery parameter estimation with continuous-time system identification
methods. Appl Energy 2016;179:426e36.

[32] Garnier H, Mensler M, Richard A. Continuous-time model identification from
sampled data: implementation issues and performance evaluation. Int J
Control 2003;76:1337e57.

[33] Remmlinger J, Buchholz M, Meiler M, Bernreuter P, Dietmayer K. State-of-
health monitoring of Lithium-ion batteries in electric vehicles by on-board
internal resistance estimation. J Power Sources 2011;196:5357e63.

[34] Garnier H, Young PC. The advantages of directly identifying continuous-time
transfer function models in practical applications. Int J Control 2014;87:
1319e38.

[35] Wu H, Yuan S, Zhang X, Yin C, Ma X. Model parameter estimation approach
based on incremental analysis for Lithium-ion batteries without using open
circuit voltage. J Power Sources 2015;287:108e18.

[36] Yuan S, Wu H, Ma X, Yin C. Stability analysis for Li-ion battery model pa-
rameters and state of charge estimation by measurement uncertainty
consideration. Energies 2015;8:7729e51.

[37] Garnier H. Direct continuous-time approaches to system identification.
Overview and benefits for practical applications. Eur J Control 2015;24:50e62.

[38] Garnier H, Bitmead RR, de Callafon RA. Direct continuous-time model iden-
tification of high-powered light-emitting diodes from rapidly sampled ther-
mal step response data. IFAC Proc Vol 2014;47:6430e5.

[39] Ljung L. System identification. In: Prochzka A, Uhl J, Rayner PWJ,
Kingsbury NG, editors. Signal analysis and prediction, applied and numerical
harmonic analysis. Birkhuser Boston; 1998. p. 163e73.

[40] Diethelm K. The analysis of fractional differential equations, volume 2004 of
Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg;
2010.

[41] Garnier H, Gilson M, Bastogne T, Mensler M. The CONTSID Toolbox: a software
support for data-based continuous-time modelling. In: Garnier H, Wang L,
editors. Identification of continuous-time models from sampled data, ad-
vances in industrial control. Springer London; 2008. p. 249e90.

[42] R. Malti, S. Victor, A. Oustaloup, H. Garnier, An optimal instrumental variable
method for continuous-time fractional model identification, in: 17th IFAC
world congress, p. XX.

[43] Young P, Garnier H, Gilson M. AN optimal instrumental variable approach for
identifying hybrid continuous-time box-Jenkins models. IFAC Proc Vol
2006;39:225e30.

[44] Hu X, Li S, Peng H. A comparative study of equivalent circuit models for Li-ion
batteries. J Power Sources 2012;198:359e67.

[45] Jorcin J-B, Orazem ME, Pbre N, Tribollet B. CPE analysis by local electro-
chemical impedance spectroscopy. Electrochimica Acta 2006;51:1473e9.

[46] Alexander CL, Tribollet B, Orazem ME. Contribution of surface distributions to
constant-phase-element (CPE) behavior: 1. Influence of roughness. Electro-
chimica Acta 2015;173:416e24.

[47] Zoltowski P. On the electrical capacitance of interfaces exhibiting constant
phase element behaviour. J Electroanal Chem 1998;443:149e54.

http://refhub.elsevier.com/S0360-5442(17)31106-4/sref1
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref1
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref2
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref2
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref2
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref2
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref3
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref3
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref3
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref3
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref4
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref4
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref4
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref4
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref5
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref5
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref5
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref6
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref6
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref6
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref7
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref7
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref7
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref7
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref8
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref8
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref8
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref8
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref9
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref9
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref9
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref10
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref10
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref10
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref10
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref11
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref11
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref11
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref11
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref12
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref12
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref12
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref12
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref13
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref13
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref13
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref13
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref14
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref14
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref14
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref14
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref15
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref15
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref15
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref16
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref16
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref16
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref16
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref18
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref18
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref18
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref19
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref19
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref19
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref19
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref20
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref20
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref20
http://dx.doi.org/10.1007/978-1-84800-161-9_4
http://dx.doi.org/10.1007/978-1-84800-161-9_4
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref22
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref22
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref22
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref22
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref23
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref23
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref23
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref24
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref24
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref24
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref24
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref25
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref25
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref26
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref26
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref27
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref27
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref27
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref28
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref28
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref28
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref29
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref29
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref29
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref31
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref31
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref31
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref31
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref32
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref32
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref32
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref32
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref33
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref33
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref33
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref33
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref34
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref34
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref34
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref34
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref35
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref35
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref35
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref35
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref36
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref36
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref36
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref36
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref37
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref37
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref37
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref38
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref38
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref38
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref38
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref39
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref39
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref39
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref39
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref40
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref40
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref40
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref41
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref41
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref41
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref41
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref41
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref43
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref43
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref43
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref43
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref44
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref44
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref44
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref45
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref45
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref45
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref46
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref46
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref46
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref46
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref47
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref47
http://refhub.elsevier.com/S0360-5442(17)31106-4/sref47

	Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery
	1. Introduction
	2. Fractional differential systems
	2.1. General linear fractional differential system equation
	2.2. Numerical analysis of fractional derivatives

	3. Continuous-time system identification
	3.1. Advantages of continuous-time over discrete-time model identification
	3.2. Conventional least squares-based state-variable filter method
	3.3. Instrumental variable-based state-variable filter method

	4. Continuous-time fractional differential model for a lithium ion battery
	5. Model parameter identification and experimental results
	5.1. Battery tests
	5.2. Pre-determination of non-integer order
	5.3. Validation results

	6. Conclusion
	References


