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Abstract

Interest in electric aircraft has increased due to developments in electric propulsion
technology and concerns regarding aircraft carbon emissions. The emerging urban
air mobility industry aims to provide convenient short-range air travel using electric
aircraft. An important factor in the design of electric aircraft is the modeling and
design of electric motors. The many degrees of freedom in electric motor design
make it a complex design problem. To mitigate this complexity, we have developed
an adjoint-based electric motor design methodology using free-form deformation for
geometry parameterization, PDE-based mesh warping with exact derivatives for mesh
manipulation, and finite element analysis for electromagnetic modeling. This paper
highlights the approach and details of the proposed method and presents results from its
application to a representative motor design problem. The optimization results in a 35%
decrease in motor mass and a 3% increase in efficiency compared to the baseline design.
These results demonstrate the efficacy of an adjoint-based optimization approach with
exact analytical derivatives for electric motor design.

Keywords Electric motor design - Adjoint-based optimization - Shape optimization -
Finite element analysis
1 Introduction

Interest in electric aircraft has increased over the years. This is heavily influenced by the
current trends in aircraft emissions. The aviation industry is a significant contributor to
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carbon emissions worldwide, with jet fuel usage accounting for about 7% of world oil
consumption and just under 3% of overall carbon emissions for energy use (Schifer
et al. 2019). It is expected that by 2050, at the current unchecked rate, the aviation
industry will be responsible for roughly 25% of global carbon emissions (Graver et al.
2018). Advancements in electric propulsion technology have also prompted interest in
aircraft electrification. Electric powertrain technologies, such as batteries and electric
motors, have seen steady improvement over the years (Koh and Magee 2008; Crabtree
et al. 2015). These technological improvements have brought realism to the idea of
electric aircraft.

Urban air mobility (UAM) is emerging as a novel form of transportation, with
the promise of shortening commutes and providing convenience for short-range air
travel using electric aircraft. The vision for UAM is to provide a safe and reliable air
transportation system for people, goods, and services (Cohen et al. 2021). By utilizing
air transportation, it is anticipated that commuting times can be significantly reduced
(Holden and Goel 2016).

Interest in aircraft electrification motivates research into the modeling and design of
new, aviation-class electric motors. The electric motor design problem involves many
geometric and operational parameters. To deal with this high dimensional parameter
space, optimization is commonly utilized for electric motor design. A variety of motor
design optimization approaches have been proposed, and these vary in application and
scope. System-level optimization approaches often focus on modeling the influence
of high-level motor parameters, such as outer radius and yoke flux, to capture general
trends. System-level electric motor design processes, as seen for an electric aircraft
(Ragot et al. 2006) and for an electric vehicle (Ahn et al. 2015), utilize analytical and
simplified relationships to model the electric motor. However, these design processes
focus on the system level, therefore limiting the modeling scope of the motor.

The majority of motor design optimization approaches in the literature focus on the
detailed design of the motor. These methods contain both operational variables, like
current and control parameters, and geometric variables, like rotor radius and air-gap
thickness. Discrete parameters, such as the number of pole pairs, are also considered.
Objective functions are selected to be any combination of high-level outputs significant
in overall motor operation and design. Examples include torque (Parasiliti et al. 2012),
output power (Di Noia et al. 2020), efficiency (Idir et al. 1998), total power losses
(Grenier et al. 2021) and motor mass (Parasiliti et al. 2012; Di Noia et al. 2020).
Coupling between these parameters also motivates multiobjective design problems,
aimed at optimizing the geometry for a combination of these states (Parasiliti et al.
2012; Di Noia et al. 2020).

Some motor design optimization approaches focus on a subset of geometric vari-
ables to target particular adverse phenomena of motor operation. As a result, the
optimal motor design is determined by a low-level aspect of motor operation, as
opposed to a high-level parameter like torque or mass. For example, motor optimiza-
tion approaches in Chai et al. (2016), Yamazaki and Ishigami (2010), Pellegrino and
Cupertino (2010) and Shin et al. (2007) isolate the motor design problem to focus on
the rotor structure and magnet shape. These parameters heavily dictate the harmonic
behavior of motors, and minimization of harmonic effects is important to reduce iron
losses and torque ripple.
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Most of the existing motor design optimization approaches utilize gradient-free
algorithms (Parasiliti et al. 2012; Idir et al. 1998; Chai et al. 2016; Yamazaki and
Ishigami 2010; Pellegrino and Cupertino 2010; Di Noia et al. 2020) or incorporate
derivatives in a simplified and inefficient manner (Grenier et al. 2021; Shin et al. 2007).
The derivative computation cost of high-dimensional problems, typically with tens of
variables, exhibits poor scaling with the number of design variables (Martins and Ning
2022); this cost can be decreased by reducing the number of design variables, but this
sacrifices the optimization problem scope. A gradient-based approach is required to
make large-scale optimization problems tractable to solve.

Although uncommon, there have been cases of solving motor design optimization
problems using a gradient-based approach. The sequence of studies in Gangl et al.
(2015, 2016) utilize shape derivatives and topological derivatives to optimally design
the rotor and magnet structures to minimize total harmonic distortion. However, a
gradient-based formulation alone is not enough to improve the scaling of computa-
tion time relative to the number of design considerations. Despite the abundance of
existing electric aircraft motor design approaches, the current methods are inefficient
in modeling the effects of the full motor design space or are too limited in scope.

Gradient-based optimization approaches using the adjoint method overcome these
limitations. With the adjoint method, the cost of derivative computation scales with the
number of outputs rather than the number of design variables; for optimization prob-
lems with a single objective, updating the design variables using the adjoint method
is a more efficient approach (Martins and Ning 2022; Martins and Hwang 2013; Gray
et al. 2019). Adjoint-based sensitivity analysis has been applied to efficiently opti-
mize systems with many degrees of freedom in various engineering problems, such as
topology optimization (Yan et al. 2022), aerodynamic shape optimization (Chauhan
and Martins 2021) and multidisciplinary aircraft design optimization (Sarojini et al.
2023).

We have developed a motor design optimization methodology for high-dimensional
design problems using a collection of geometry parameterization, mesh manipula-
tion and motor analysis methods centered around adjoint-based sensitivity analysis.
In the proposed methodology, the geometry is parameterized using free-form defor-
mation and the mesh is updated using PDE-based mesh warping. A semi-adaptive
load-stepping approach is applied to ensure mesh warping convergence, with the
geometry parameterized in a manner that is amenable to exact analytical derivatives.
Finite element analysis is utilized to solve Maxwell’s equations over a full motor
mesh. This paper highlights the details and approach for the presented motor design
methodology. We demonstrate the methodology by performing design optimization
of a three-phase permanent magnet synchronous motor for a range of operating con-
ditions. We compare results from a baseline case and a comprehensive geometric
design case to quantitatively assess the efficacy of using adjoint-based optimization
for electric motor design.

Recently, Babcock et al. independently developed a similar methodology using
adjoint-based derivative computation for motor design optimization with electro-
thermal coupling (Babcock et al. 2023). There are differences between their method-
ology and the methodology proposed here, such as the electromagnetic modeling
approach, the material model and the electromagnetic output computation method.
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Most notably, the work from Babcock et al. utilized the finite-difference method to
capture sensitivities with respect to changes in the mesh and geometry, while the
methodology proposed here uses exact analytical derivatives coming from the geom-
etry parameterization and mesh warping methods. The current methodology consists
of a different set of methods with end-to-end analytical derivatives to solve the high-
dimensional motor design problem.

The structure of the paper is as follows. Section?2 discusses electric motor design
background, including motor types, and various motor analysis fidelity levels. Sec-
tion3 outlines the motor design methodology details, divided into theoretical and
computational aspects. Section4 provides results, including verification of the elec-
tromagnetic solver, a grid independence study, and a system-level demonstration of
the presented methodology. Finally, Sect.5 concludes the paper and discusses future
work.

2 Background

This section provides background on high-level motor design and analysis choices. The
demands of electric aircraft propulsion place strict limitations on the type of electric
motor. As a result, these discrete choices must be made early on in the design stage.
First, we address the benefits and drawbacks of various electric motor types in electric
aircraft operating conditions. Next, we compare different motor flux orientations.
Finally, we discuss the capabilities of various motor analysis approaches across a
range of fidelity levels.

2.1 Comparison of motor types

There are strict requirements for aviation-grade electric motors; these include com-
pactness, high power density, efficient operation at high speed conditions, and minimal
noise footprint. There are numerous standard motor topologies used in various appli-
cations; these include DC (brushed or brushless), induction, switched reluctance, and
permanent magnet motors. Of the existing motor types, we need to select one that is
well suited for the performance requirements of aircraft operation.

Studies conducted in Bolam et al. (2020), Tenconi et al. (2014), Yildirim et al.
(2014), Hashemnia and Asaei (2008) and Zeraoulia et al. (2006) highlight the benefits
and drawbacks of each motor type. DC motors, for example, provide simple control
and field weakening capabilities, but construction and maintenance of the motor struc-
ture pose difficulties with usage; these motors serve well in low-power applications
(Hashemnia and Asaei 2008). Induction motors are the most mature motors running
on AC power, and are favored in general applications for their reliability and robust-
ness. However, this class of motors suffers from lower efficiency at high speed due to
the large rotor winding power loss, and is not well suited for the high-speed demands
of aircraft operation (Hashemnia and Asaei 2008). Switched reluctance motors are
rigid and operate reliably under a wide constant power region. However, this motor
type suffers from high torque ripple and electromagnetic interference (Hashemnia and
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Asaei 2008; Yildirim et al. 2014). Permanent magnet synchronous motors (PMSMs)
are known for their high power density and efficient operation in high-speed condi-
tions; however, the reliance on permanent magnets in the rotor puts them at risk of
demagnetization at high temperatures. Compared to other motors, these motors con-
tain better thermal management systems than induction motors to mitigate excessive
joule losses (Bolam et al. 2020; Tenconi et al. 2014; Zeraoulia et al. 2006) and less
harmonic and vibration effects compared to SRMs due to less torque ripple (Hashem-
nia and Asaei 2008; Tenconi et al. 2014; Yildirim et al. 2014; Zeraoulia et al. 2006).
Based on the studies mentioned above, we demonstrate our design methodology using
a PMSM topology; among the available motor types, it is best suited for the demands
of electric aircraft operation.

2.2 Motor flux orientation comparison

Another significant design choice that impacts the performance and application of
electric motors is the magnetic flux orientation. The two types are radial flux, in which
the magnetic flux between the rotor and stator is oriented radially, and axial flux, where
the flux is oriented along the length of the motor. Selecting a flux orientation for an
electric aircraft motor is not as straightforward as the motor choice, as both types have
their benefits and tradeoffs.

For example, studies done in Cavagnino et al. (2002) and Zhang et al. (2014) show
that, when motor size is heavily restricted, axial flux motors have higher output torque
and torque densities than radial flux motors. This suggests that axial flux motors are
well suited for electric aircraft applications. However, other attributes of the two flux
orientations need to be considered for aircraft operation as well. A performance com-
parison done by Parviainen et al. (2005) suggests that, in operating cases of identical
current density and electric loading, radial flux motors operate with higher efficiency
than axial flux motors. For an axial flux motor to match the efficiency of a radial
flux motor, a significant volume increase is required. Additionally, it is impractical to
produce axial flux motors at short lengths due to the space of the end connections.
Work done in Pippuri et al. (2013) compares the torque density at a baseline power
and speed condition between axial and radial flux motors; it was found that, for the
maximum efficiency case and most compact case, the torque density of the radial flux
motor exceeded that of the axial flux motor.

Another important aspect of aircraft design is noise; initial studies have shown that
radial flux motors have reduced noise profiles compared to axial flux motors. Wei
et al. (2022) compared radial and axial flux motors with identical power demand and
varying pole-slot combinations to assess the effects on noise; it was found that the axial
flux machines possess more complex noise profiles with higher dominant harmonic
modes than radial flux motors. However, limited comparisons of noise profiles between
radial and axial flux motors have been performed. Further studies must be conducted
to conclude which flux orientation has lower harmonic effects.

Although aviation-class electric motors require high output power and torque den-
sities, the practicality and operation of motors for both flux directions must be taken
into account. Based on the need for compactness and high efficiency across a wide
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range of operating conditions, as shown in the aforementioned studies, we have chosen
to demonstrate our motor design optimization methodology using a radial flux PMSM.

2.3 Motor modeling approaches

Electric motor modeling approaches span a wide array of methods and levels of fidelity.
The level of desired accuracy is dictated by many factors, such as problem scope and
application. Electric motor models can be divided into three main categories: simple
analytical models, equivalent circuit models, and finite-element-based models.

The lowest level of fidelity of motor models uses simple analytical equations or
surrogate models; these approaches simplify the motor representation into its most
fundamental aspects and are utilized in the design and optimization of systems with
many variables. McDonald (2013) developed a method to model motor performance
based on data on motor efficiency and power loss; the approach uses polynomial
fitting to model efficiency and power loss as a function of torque and speed. The work
conducted in Dantsker et al. (2019) describes an optimization approach for the design
of an unmanned solar-powered aircraft, modeling the electric motor using Ohm’s law
and standard analytical equations to calculate back electromotive force (emf). At a
similar level of fidelity, Falck et al. (2017) performed trajectory optimization of the
NASA X-57 Maxwell aircraft and modeled motor efficiency using data interpolation.
Analytical relationships relate the efficiency to the motor power losses, and the heat
dissipation and temperature are determined to assess the thermal constraints.

Although the analytical and surrogate approaches are sufficient for initial motor
modeling and design, they are heavily limited by the lack of generality and extensibility
to different motor geometries. Analytical approaches rely on assumptions about the
motor operation, and behavior; as a result, higher-order effects are often ignored and
only the general trends are captured. Additionally, these models do not extend well to
general motor analysis, as the modeling assumptions are specific to motor geometries.

Magnetic equivalent circuit (MEC) models represent an improvement in fidelity
level from the analytical approach. MEC models benefit from a short computation time
and reduced computational complexity while still providing reasonable accuracy; as a
result, these methods are desirable for the initial rapid design and analysis of existing
motor topologies. MEC methods discretize different zones of the motor geometry
into circuit components, and a basic circuit analysis approach is applied to model
the magnetic flux. Source terms within standard equivalent circuit methods represent
motor flux sources, and magnetic reluctances denote field hindrance in areas like the
air gap. Sebastian et al. (1986) devised an MEC approach modeling two PMSMs with
different magnet inset layouts within the rotor. The analytical MEC results showed
promising qualitative correlation with the experimental torque data across a sweep
of current lead angles, while the inductance errors were within 2%; the results also
highlight the versatility of the MEC approach to represent motor geometry. Further
development of the MEC approach expanded the considerations within the equivalent
circuit to capture more complex phenomena; work done in Baet al. (2022), Wijenayake
and Schmidt (1997) and Sheikh-Ghalavand et al. (2010) highlights the significance of
considering additional equivalent circuit components to estimate saturation and core
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losses, both of which play a significant role in determining overall power loss and motor
performance. Upon introducing additional components to model more complex motor
phenomena, validation with results from finite element analysis and experimental
testing shows an improvement in the accuracy of the MEC approach.

Despite the extensibility of MEC to capture additional pertinent physical phe-
nomena of motor operation, this approach models the motor in a nodal fashion.
Additionally, parameters must be averaged over regions of the motor geometry to
adhere to the nodal nature of the MEC method. As a result, the method is unable
to capture the full flux field effects, and information about the flux fields and motor
behavior is lost, leading to inaccuracies in parameters like core loss and saturation.
This limits the MEC approach when it comes to analyzing completely new motor
designs (Yilmaz and Krein 2008). For a full in-depth analysis and understanding of
the flux field, a finite element analysis approach is required to model the comprehensive
behavior of the motor.

High-fidelity analysis is conducted using the finite element analysis (FEA) approach
by solving a form of Maxwell’s equations over a mesh representation of a motor. The
solution field is directly used to calculate important outputs like flux linkage, core
losses, and torque. An additional benefit of the FEA approach is the dependence of
the solution field on the geometry; this captures detailed effects of the flux field and
motor operation and provides a more meaningful comparison between the behavior
of different motor topologies (Yilmaz and Krein 2008). As a result, this approach
provides more insight when conducting design sweeps of different motor topologies
for discrete parameters such as pole pairs, and stator teeth, or assessing new motor
structures. Work done in Giiemes et al. (2011), Powell et al. (2003) and Hebala et al.
(2021) explores these parameters using the FEA approach, highlighting the benefits
and drawbacks of different motor designs.

Additionally, studies from Grenier et al. (2021), Powell et al. (2003), Lin et al.
(2018), Hebala et al. (2021, 2022) simulated electric motors in aircraft operating con-
ditions using a high-fidelity approach; these studies are aimed towards motor designs
of high power density and efficiency, key requirements for electric motors in aircraft
operating conditions. The FEA approach provides a comprehensive output of the flux
fields; as a result, many critical phenomena in motor operation can be analyzed, and the
motor design approach can focus on one or more of these phenomena. These include
the minimization of AC losses due to the high-frequency nature of motors (Hebala
et al. 2022) and the analysis and mitigation of cogging torque or torque ripple, a key
output for understanding the motor harmonics and vibrations (Hebala et al. 2020,
2021; Lin et al. 2018; Giiemes et al. 2011).

The accuracy and computational efficiency across motor modeling approaches of
varying fidelity levels can be leveraged in a multi-fidelity approach. Ragot et al. (2006)
demonstrate this in the optimization of a solar airplane; a simplified MEC model deter-
mines the air gap field strength, while other motor parameters are found using analytical
relationships. The FEA approach can also be used to inform low-fidelity models.
Elsherbiny et al. (2022) utilize results from FEA simulations as a pre-processing cali-
bration step to generate maps for flux linkage, torque, and inductance as a function of
current components; these maps are utilized as an inverse function in a MEC model
to estimate torque and power losses. Methods that directly couple MEC and FEA
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also exist, where both approaches are utilized simultaneously to leverage the compu-
tational benefits of MEC with the accuracy of FEA in different zones of the motor
geometry (Nedjar et al. 2012). However, calibration and coupling in multi-fidelity
approaches are often too dependent on either the operating case or the geometry;
thus, the approach is not modular enough for general motor design. In addition, the
use of coupling introduces implementation complexity with potentially little gain in
accuracy.

For our motor design optimization methodology, we are interested in an accurate
motor analysis method that is extensible to various motor geometries. Based on the
above studies comparing different fidelity levels of various motor analysis models, we
select the high-fidelity FEA approach for our motor analysis model.

3 Methodology

The details of the novel motor design optimization methodology are explained in this
section. We first outline the theoretical approach, and then discuss the implementation
and computational aspects of the workflow. We then combine these details to present
the complete motor design methodology.

3.1 Mathematical model

In this subsection, we outline the theory behind the motor design and shape optimiza-
tion methodology. First, we discuss free-form deformation, a differentiable approach
to parameterizing the motor geometry. Then, we formulate the governing electromag-
netic modeling PDE from the standard Maxwell’s equations and outline the approach
for modeling magnetic permeability in a differentiable manner. Finally, we summa-
rize the post-processing formulation used to compute high-level outputs from the FEA
solution.

3.1.1 Free-form deformation

To parameterize and deform the subdomains of our geometry in a computationally
efficient manner, we use a technique to manipulate solid geometries called free-form
deformation (FFD). This technique is significantly more cost effective than physically
motivated approaches, such as linear spring models, or finite-element methods, and is
easier to implement (Moore and Molloy 2007; Gibson and Mirtich 1997). For simple
geometric movements, where the underlying mechanics of the geometric deformation
are not necessary, FFD provides low computational cost and high control for altering
the geometric structure (Moore and Molloy 2007; Gibson and Mirtich 1997).

FFD applies geometric deformations using parametric curve representations, such
as B-splines or Bézier curves, to parameterize and deform a grid containing the geom-
etry (Sederberg and Parry 1986; Kenway et al. 2010; Gibson and Mirtich 1997). In
practice, FFD is applied by surrounding a geometry with a pseudo-structure defined by
control points; the geometry is embedded within the structure and is defined paramet-
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Fig.1 We shown an example of Yy
a two-dimensional geometry (in

black) embedded within an FFD

face (in red). When embedded

into the red FFD face, the

corners of the black rectangle V; Vi Vo
can be represented
parametrically in the (u, v)
space. Movement of the FFD v
face control points P j; will
warp V; based on the &
undeformed (u, v) coordinates.
(Color figure online) Puo U

\4 V-
0 3.

rically as a function of the control points. Movement of the control points reshapes the
physical form of the geometry to maintain the parametric coordinates of the embed-
ded geometry. In two-dimensional space, we refer to these pseudo-structures as FFD
faces. A simplified two-dimensional example is illustrated in Fig. 1, where mesh enti-
ties are colored in black and FFD entities used for parameterization are shaded red;
Vo, V1, V2, and V3 represent the defining vertices of the mesh. We can formulate this
parametrization in the x—y coordinate frame as

p(r.y) = Poo(x. ) + [g ﬂ (P11(x. 1)~ Poo(x. 1)), M

where Py and Py represent the FFD control points, and u, v are the parametric coor-
dinates of the local coordinate frame defined in red. Nodes within the FFD face contain
a physical coordinate within the x—y plane, along with a set of constant parametric
coordinates in the u—v plane. As the FFD control points Py and P1; move, the embed-
ded geometry defined by V; will deform in physical space in a way that maintains its
parametric coordinates within the FFD face. In addition, the FFD parameterization is
prescribed within the geometry changes; thus, we can assign design variables corre-
sponding to the changes of the geometry rather than directly defining the geometry
itself.

3.1.2 Electromagnetic modeling

We model the motor by solving Maxwell’s equations:

oD
VxH:J—i—E, )
V.-B=0, 3)
B = uH, 4)
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where Ampere’s circuital law (2) governs the field behavior based on current sources
J, and the permeability p relates the magnetic flux density B and the magnetizing
field H (4). We rely on two assumptions to simplify the governing equations. First, the
motor frequency is within the kilohertz range, low enough to disregard the transient
effects of the displacement field D. Second, the end effects of the motor are negligible,
and the operating states are invariant along the motor length; this allows the problem
to be solved in the cross-sectional plane of the motor. Gauss’s law of magnetism (3)
states that the magnetic flux density is divergence-free, so the vector field B can be
represented as a curl of a vector field:

B=VxA, (&)

and this vector field is called the magnetic vector potential A. The variation of the
magnetic flux density is purely in-plane, so (5) implies the magnetic vector potential
A is one-dimensional normal to the geometry. Substituting (4) and (5) into (2), we
obtain a governing equation in terms of the magnetic vector potential:

Vxul'VxAy) =1, (©6)

where each term contains a component normal to the solution plane. Utilizing the
gauge freedom of the vector potential field, we set V- A, = 0 to formulate a governing
equation over a two-dimensional field for A, represented as a Poisson equation:

V- 'VA) =1, (7)

where the source term J, represents the field excitation. This term contains two distinct
contributions: the input signal excitation in the stator windings J,, and the flux density
distribution from the magnets J,,. The equivalent source term from the magnets J,,
can be represented as

Jn =V x Hg, )

using the magnetic coercivity H, (Weiss et al. 1984).

A model for the permeability u is required to relate the magnetic vector potential
field to the source terms. In ferromagnetic materials, such as iron, permeability is a
highly nonlinear property. Discrete approaches to permeability and nonlinear material
modeling are commonly used in electric motor analysis due to the fitting complex-
ity; however, these are infeasible for our application as gradient-based optimization
requires smooth and continuous functions. We model this effect with smoothed piece-
wise fits based on material data from Ansys Maxwell (Ansys Accessed 03/20/2021).
Each discrete function is selected such that the overall permeability fit qualitatively
matches regular permeability curve trends (Jaafar et al. 2004; Hao et al. 2020; Gmyrek
and Cavagnino 2021). To guarantee differentiability, we use a cubic function to fit the
center region of the data. This allows for matching gradients at the bounds of each
section, ensuring compatibility with gradient-based optimization. The resultant fit is
shown in Fig. 2.
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Fig.2 A set of smooth functions
is fit to discrete permeability
data. A joiner function (in green) 3500
is used to connect the linear and
exponential sections. The

joining function is chosen to be 2500
a cubic function to allow for £ 2000
matching values of permeability
and derivatives at the section
bounds. (Color figure online) 1000

e Data
Linear
—— Cubic

—— Exponential

4000

3000

1500

500

0
0.0 0.5 1.0 1.5 2.0 2.5

3.1.3 Post-processing

The post-processing step uses the outputs from FFD and FEA to determine high-level
motor states such as torque, efficiency, and power loss and geometric parameters such
as area. We consider two different coordinate frames in motor operation: the static abc
coordinate frame and the rotating dg coordinate frame, which rotates with the rotor
rotation and input signal; we use a direct-quadrature-zero (DQO) transformation to
convert between the two frames. The FEA solution is computed in the abc coordinate
frame; we introduce the dq coordinate system to simplify the post-processing steps,
circumventing the complexities of analyzing a rotating system in a static frame.

We use the FEA solution to calculate flux linkage, which is a measure of the flux
through a surface in space found by integrating the magnetic flux density field B. The
integration surface is represented by a pseudo-surface in the air gap connecting two
stator winding slots of the same phase, as shown in Fig. 3; this surface is extended
along the length of the motor. We reformulate the flux linkage in terms of the magnetic
vector potential field A by applying Stokes’ Theorem, as follows:

A:/B-dS:/(VxA)-dS:/A-dl, ©)]
N s as

where S and 1 represent a surface and a line defining the pseudo-surface, respectively.
Given that the magnetic vector potential acts normal to the motor plane, (9) can be
simplified further in terms of parameters from Fig. 3 to

A= f‘c)SA dl = ((Aps+1 — (AL, (10)

where the subscripts s, s + 1 describe adjacent slots of the same phase. The nodal
flux linkage approach (10) has been used in both the educational and research fields
(Lowther and Silvester 2012; Kang et al. 2000; Salon 1995; Bianchi 2005). The total
flux linkage per phase is then computed by summing each A per pole across the entire
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Fig.3 We model the air-gap
with a pseudo-surface
representation. The flux linkage
can be represented using the (11 2)s+14 S
magnetic vector potential A, /‘

rather than the magnetic flux

density B
11 /

B

motor as follows:

Ns/3

vi =Y Injl, (1)
j=1

where the subscript i represents one of three phases a, b, c, subscript j represents the
per-pole flux linkage from (10) and N is the number of stator slots. The per-phase
flux linkage is converted from the abc frame to the dq frame with the DQO transform;
the dg flux linkage components are used to calculate voltage, as shown below:

Va Iy -V
=R +w 1], 12
[ Va ] [1 q ] |: Va (12
where o is the rotational speed and 14, I, are the dg components of the current. The
flux linkage is also used to calculate electromagnetic torque, represented as:

3
Tem = EP(I//qu - wad)a (13)

where p is the number of pole pairs. Power losses and efficiency can be found from
this output torque. Four sources of power loss are considered: copper loss, core loss,
windage loss, and stray loss. Copper loss is characterized as heat loss due to the current
excitation in the windings, and is represented as

P., = mRI?, (14)

where m is the number of phases, R is the per-phase resistance, and / is the root-
mean-square current. Core losses arise from the periodically changing magnetic field
within the motor core, and can be divided into two distinct factors: hysteresis loss and
eddy current loss. We model these two power losses following Mi et al. (2005) taking
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advantage of the periodic behavior of motor operation to calculate the overall core
loss. The hysteresis loss is represented as

Py = 27 flky, / B|AdS, (15)

where f is the input signal frequency, kj, is the hysteresis coefficient, and B is the
Steinmetz coefficient, set to 1.7. The eddy current loss can be modeled similarly as

Poe = 2702 FPlkee / IB|2dS, (16)

where k.. is the eddy current coefficient. The windage loss represents losses due to
air resistance within the air gap and can be represented as

Py = ket f pa’ril, (17

where k, is the motor surface roughness, f is the friction coefficient, p is the density
of air, w is the rotational speed, 7, is the rotor radius, and / is the motor axial length.
The friction coefficient is a measurement of the fluid interaction with the motor core,
and is dependent on the Reynolds number in the air gap:

0.0152
f= W (18)
)
Rey = 22 (19)
V

where p is air density, iy is the average tangential velocity in the air gap, ¢ is the
air gap thickness and v is the kinematic viscosity of air. This simplified approach to
model windage loss, however, is unable to capture the effects of the complex vortex
interaction and fluid instability due to the stator geometry, leading to under-prediction
(Saari 1998). Stray loss P in the motor is also considered to account for variations in
the load during motor operation; we assume this to be one percent of the output power
(Tong 2014). After calculating the power loss components, the effective output load
torque can be determined. We use a simple torque balance model, where the torque
loss is determined by the mechanical power losses and rotational speed:

Py + Poe + Py + P,
T = Tem — Uoss = Tem — eca) = Sv (20)

where t; represents the load torque produced by the motor. Note that the effects of
copper loss are neglected in the torque balance model. Although copper loss reduces
the overall output power, it does not hinder the mechanical behavior and rotation of
the motor; as a result, it is not considered in the torque balance. The efficiency can
then be computed as a ratio between the output power and input power, where the
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linear constant

Fig.4 A visual representation of the shape parameter types is shown. A constant shape parameter applies
uniform movement to the geometry in one direction. The linear shape parameter divides the prescribed
deformation linearly across the geometry in a direction; this will maintain the symmetry of the deformation

output power is the product of rotational speed and effective output torque and the
input power is equal to the output power and the sum of the power losses:
T

1w+ Pey + Py + Pee + Py + Py

3.2 Computational approach

In this subsection, we discuss the computational tools and aspects of the motor
design methodology. These details of the model build upon the theoretical founda-
tion described above in Sect. 3.1.

3.2.1 Geometry parameterization and free-form deformation

To perform FFD and mesh warping, we need a robust mesh generator that provides
detailed mesh information for geometry parameterization. We use GMSH (Geuzaine
and Remacle 2009), a versatile three-dimensional finite element mesh generator with a
wide range of capabilities, such as classical geometry generation, boolean operations,
and object assignment. We utilize this software to generate the motor mesh and extract
detailed nodal information for the initial geometry parameterization.

As outlined in Sect. 3.1.1, FFD faces are overlaid onto the geometry around areas of
interest for shape optimization. To connect design variables to the geometry parame-
terization, we assign shape parameters to the FFD faces; we have defined two types of
shape parameters: constant and linear. A constant-type shape parameter applies a con-
stant shift to the FFD face; this operation corresponds to a fixed translation in space. A
linear-type shape parameter, on the other hand, divides the transformation across the
FFD face in a linear fashion, acting symmetrically across the selected dimension; this
is synonymous with stretching or compressing the geometry. Figure 4 shows a visual
representation of the two shape parameter types, where bold variables denote shape
parameters and the ~ symbol denotes the geometric change of that shape parameter.

The deformation of the FFD face changes the geometry; a simple parameterization
example is visualized in Fig.5. First, the movement is propagated onto the major
vertices of the geometry subdomains Vo, Vi, V2, V3; in the parametric coordinate
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Fig.5 We visually represent the FFD vertex and edge parameterization steps 4 and 5. The black represents
the geometry, and the blue represents the geometric aspect that is being parameterized. At step 4, the para-
metric coordinates of the vertices defining the geometry are found. Then during step 5, a one-dimensional
parameterization for nodes along the geometry edges is conducted. This maps the changes in the geometric
vertices to the boundary nodes on the rest of the geometry

frame, these vertices have constant u—v coordinates. The movement of the control
points Pog, Po1, P1o, P11 will alter the physical coordinate of the subdomain vertices
Vo, V1, V3, V3 to maintain their original u—v coordinates in the parametric frame, as
shown on the left in Fig.5. The subsequent movement of the subdomain vertices is
then applied to the nodes along each of the subdomain edges, parameterized similarly.
As shown on the right, the movement of the vertices V1, V, will alter the position the
nodes e, €11, €12, €13 of edge E| whilst maintaining a constant parametric coordinate
w along the edge. We can consider FFD as a mapping ¥ from the original geometry
to an altered geometry, where i contains the parameterization of the subdomains
relative to the FFD faces. For all subdomain edges, the new edge nodes can be defined
as ¢;j = ¥ (e;;) and the changes in the geometry can be defined as 6, = ¢;; — ¢;; =
Y(eij) — eij.

The full set of computational steps for FFD is summarized below.

1. A region of the geometry is embedded within an FFD face. A combination of
shape parameters is set to define the allowable deformations of the FFD face.

2. Geometric design variables related to the embedded geometry are set; these design
variables define significant parameters of the geometry (for example, the rotor
radius in a motor).

3. Analytical relationships between the design variable and a set of shape parameters
are defined; these relationships between the design variables and shape parameters
define a mapping that represents the change in the variable to the representation
of this change on the geometry, altering the location of the FFD control points.

4. The movement of the FFD control points warps the FFD face; the deformation of
the FFD face shifts the major vertices of the embedded surface V; to maintain the
parametric coordinates.

5. The movement of the major vertices is mapped onto the edges E; by moving
the edge nodes ¢;; that define the embedded surface; the edge nodes will shift
accordingly to maintain their parametric representation along the curve.
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The approach presented here allows changes in geometric variables of interest in motor
design to be mapped to the boundaries defining the structure of the motor geometry
in an efficient and differentiable manner.

3.2.2 PDE-based mesh warping

We utilize a PDE-based approach for mapping the discretization of the major features
(e.g., magnet shape, outer boundary) to the mesh for the electromagnetic analysis.
For simple subdomain movements, as shown in the previous section, non-physical
techniques like splines and FFD are simple and cost-effective. However, for complex
mesh deformations, non-physical techniques are not as robust and prone to generating
skewed mesh elements (Moore and Molloy 2007).

Interpolation-based methods, such as inverse distance weighting (IDW) and radial
basis functions (RBFs), lack a physical analogy but are commonly used and compu-
tationally robust. However, these approximation methods require tuning parameters
and functions beforehand, and have their own shortcomings related to error and feasi-
bility. Solving the system of equations generated with RBFs for problems with more
than a few thousand data points becomes very costly and memory intensive (Selim
and Koomullil 2016; Amidror 2002). IDW interpolation avoids solving a system of
equations but still requires summing over all of the nodes, and the accuracy suffers
near the control points due to the vanishing derivatives (Luke et al. 2012; Amidror
2002).

PDE-based approaches using finite element methods (FEM), compared to linear
spring models, are more flexible with complex meshes, boundary conditions and mate-
rial types; they are also less prone to matrix stiffness, solver instability and localized
interactions, which can all lead to poor mesh element shapes (Moore and Molloy 2007;
Gibson and Mirtich 1997). Although the computational expense of FEM approaches
is significant, we opt for this method given the importance of a high quality mesh.

As explained in the previous section, FFD is implemented to model the move-
ment of subdomain boundaries comprising the mesh outline. The mesh warping step
updates the mesh based on the geometric changes computed during FFD. The geo-
metric deformation computed from FFD is utilized as the boundary condition for the
mesh warping. The state variable in the mesh warping technique is the mesh node
displacements, denoted as u and defined as

uX) = ¢(X) - X, (22)

where X represents the original position of the mesh nodes and ¢ is a mapping to the
new mesh node locations. The finite element domain is denoted by €2, and I" indicates
the boundaries of the finite element domain. We formulate the mesh warping problem
as a hyperelasticity problem, represented as

—V.Pu) =fin Q

23
u=u,. onl, 23)
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where the boundary condition term u,. = &, is the boundary movement given by
FFD, and f represents a body force, which is equal to zero. Additionally, P is the first
Piola—Kirchhoff stress tensor, defined as

P=JoF 7, (24)
where F is the deformation gradient given as

F 0¢ Vu+1I (25)
= —_— = u
X ’

and I is the identity matrix. The St. Venant—Kirchhoff constitutive model is used for
the material model, in which the strain energy function is defined as

v (F) =uE: E + %(tr(E))2 (26)
and the Green—Lagrange strain function E is defined as
E = %(FTF —1). (27)
Thus, the first Piola—Kirchhoff stress tensor in (24) can be reformulated as
P(F) = FQuE + rtr(E)I) (28)

in terms of the Green—Lagrange strain function. The mesh warping problem is solved
using FEniCSx (Baratta et al. 2023), an open-source platform for solving PDEs;
FEniCSx contains derivative computation capabilities, a necessity for gradient-based
optimization. We interface to FEniCSx using femo,' a general framework for solving
finite element-based optimization problems.

The hyperelasticity approach is highly nonlinear and presents difficulties related
to solver robustness and convergence. We use a method known as load-stepping, in
which the boundary condition data for the mesh movement is divided into small steps.
As aresult, the mesh warping algorithm solves a sequence of nonlinear problems with
smaller deformations. The reduced step size makes the problem more linear, and the
solver is less susceptible to divergence. The number of steps is computed based on
mesh element qualities and maximum FFD boundary movement. The hyperelastic
nature of the approach also makes each load step independent of the solution history.
The load-stepping approach has been applied adaptively; upon solver divergence, the
mesh reverts to the previous successful solution. The step size is then recalculated
based on updated mesh characteristics and the remaining boundary movement. This
allows for automated correction during the load-stepping process. This process is
visualized in Fig. 6.

1 https://github.com/RuruX/femo.
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Fig. 6 A visual representation of the adaptive load stepping approach is shown here. The total load is
divided into a discrete number of steps. Upon solver divergence, a backward step is taken to recover the
last successful solve, and a new step size is calculated. We refer to this process as the adaptive recalculation

[t

(AR) step. This process is repeated for “i” instances until the total load is applied, indicated by the dashed
green line. To avoid recurring solver divergence, it should be noted that hg > hy > hy > -+ > h;

Treatment of the nonlinear solver is important for convergence, as this influences the
accuracy of both model evaluation and derivative computation. Divergence signifies
that the mesh did not converge to the correct geometry based on the boundary infor-
mation. As a result, the post-processing computations that are reliant on the geometry
are both compromised. However, the influence of solver convergence on the model
derivatives plays an arguably more significant role. The derivatives provided by the
FEniCSx solution depend on the convergence status of the mesh warping solver; this
influences the trajectory of the design variables, causing the design to divert from the
optimal solution. Furthermore, critical failure of the optimization can occur upon the
existence of infs and NaNs.

3.2.3 Electromagnetic modeling

Similar to the PDE-based mesh warping, FEniCSx is utilized to solve the electromag-
netic problem over the motor mesh. We use (7) to formulate the electromagnetic finite
element problem as

—V-(u'VA) =), inQ 29)
A, =gonTl,

where we set g = 0 to represent dissipation of the magnetic vector potential A at the
boundaries. This boundary condition requires special attention due to the boundary
movement from FFD. We format (29) into the weak form by multiplying each side with
a test function v and integrating over the domain. We now have a partial-differential
equation in the weak form represented as:

//flVAZ-VvdxszZvdx, (30)
Q Q
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which can be implemented in FEniCSx. Nitsche’s method is applied to handle the
treatment of A, at the mesh boundaries due to the boundary movement from FFD.
First, the PDE on the undeformed mesh is considered. By moving both terms of (30)
to the same side and applying Nitsche’s method for the Dirichlet boundary condition,
the PDE on the undeformed mesh can be written as

R(AZ,Q)=/ w VA, - Vvdx
Q
—f szdx—/u_l(VAz~n-v FVu-n-(A, —g)dl' (31)
Q r

C
+ / =L (A, - g)ar,
r h

in the form of a residual function, where C ., is a scaling factor, # is the cell diameter
computed using the cell circumradius, and n represents the facet normal direction. The
nonlinear solver drives this residual to zero to satisfy the boundary conditions due to
changes in the geometry and mesh. The approach to determine the variational form
for the deformed mesh uses a coupling method that incorporates u from (23) into (31)
by modifying the differential operators using Nanson’s formula; the details of this are
approach are further outlined in Bazilevs et al. (2008).

3.2.4 Optimization framework software

The motor design optimization framework is developed using two open-source soft-
ware packages. The model is built using the Computational System Design Language
(CSDL) (Gandarillas et al. 2022), a Python-based embedded domain-specific language
designed to facilitate the modeling and optimization of complex multidisciplinary sys-
tems. CSDL contains a standard library of operations with automated derivatives; as a
result, the complexity of model implementation and derivative computation in CSDL
is low. CSDL also automates adjoint-based derivative computation. Any models gener-
ated with the CSDL front end will automatically compute derivatives using the adjoint
method during optimization. To connect the workflow in CSDL to an optimizer, we
use modOpt, 2 an environment developed to interface with and design optimization
algorithms. The complexity and demand of this workflow require a robust optimizer
capable of gradient-based optimization. We utilize SNOPT (Gill et al. 2005), an opti-
mizer based on the SQP method.

3.3 Implementation details

The mathematical models from Sect.3.1 and details of the computational approach
from Sect. 3.2 are combined to assemble the general motor design framework; each
discipline is shown in Fig. 7, along with the inputs and outputs that connect each disci-
pline. The geometry pre-processing step generates the mesh and FFD parameterization
data. In the current approach, the rotor torque and rotational speed inputs are constant,

2 https://github.com/LSDOlab/modopt.
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Fig.7 The design workflow for the motor methodology is shown. The pre-processing steps in orange provide
information for the four main evaluation models, shown in green. We denote the outputs from the rotor
performance model using the subscript ;- to refer to the rotor torque 7, and rotor rotational speed ;. We use
8¢ as shorthand for a general set of geometric design variables and 8, to represent the changes in subdomain
edge position given from FFD. The terms f, ¢ represent the objective and constraints, respectively. (Color
figure online)

so rotor-motor coupling is neglected. Therefore, we incorporate a rotor performance
model outside of the optimization loop to evaluate the operating torque. In general,
however, we can easily consider this coupling by including a rotor performance model
within the optimization loop.

4 Results

In this section, we demonstrate the proposed motor design optimization methodology.
First, we present verification results and quantify any existing errors in the proposed
method. Next, we conduct a grid independence study to determine reasonable element
sizes for the mesh. Finally, we demonstrate design optimization results for a motor
within an electric aircraft system. All results are generated for a 12-pole, 36-slot radial
flux permanent magnet synchronous motor; an example of the geometry is shown in
Fig.8.

4.1 Model validation

The FEniCSx electromagnetic solver is verified using the Ansys Maxwell software
(Ansys Accessed 03/20/2021). We begin with a qualitative comparison of the output
magnetic flux density fields, shown in Fig.9. The two cases considered here are the
no-load (no current) case and the 280 A current amplitude case. We see qualitative
similarities in the no-load flux density field distributions between the FEniCSx solver
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Fig.8 The layout of a 12-pole
36-slot PMSM modeled in our
work is shown here. The
geometry is color-coded to
identify different materials and
properties of subdomains. Red
and blue indicate North and
South magnets, gray represents
the motor core, and pink, yellow,
and green represent the 3-phase
windings. (Color figure online)

Table 1 A torque comparison between Ansys Maxwell and FEniCSx solvers shows increasing error with
the applied current load

Current load (A) Torque from Ansys Maxwell (Nm) Torque from FEniCSx (Nm) Error (%)

100 80.59 86.37 7.17
280 182.68 206.67 13.13

in Fig.9a and Ansys Maxwell in Fig. 9b. The flux field dissipates in a similar fashion
around the boundaries and between stator teeth, and the flux density concentration
around the magnets indicates that the modeling approach using (8) for the magnets
is accurate. However, higher saturation values of the flux density exist around the
magnets in the Ansys Maxwell results. Comparing Fig. 9c and d, we see similar trends
for the 280 A load case, with larger discrepancies in the saturation areas.

To assess the error in the magnetic flux density fields shown in Fig.9, the output
torque from the FEniCSx solution and the Ansys Maxwell solution are compared.
A no-load case produces no torque; therefore, we compare the output torque using
an additional load case of 100 A. The results are shown in Table 1. We see a larger
torque error as the current amplitude increases; the error does not exceed 14% within
the tested cases. We believe the sources of error in these results originate from the
nonlinear permeability fitting within the motor core and the nodal evaluation approach
for calculating the torque from (10); this is further discussed in Sect.5 under future
work. For the current study, we accept this error as reasonable to demonstrate the
design methodology.

4.2 Grid independence study
We conduct a grid independence study to assess the influence of mesh element sizes

on the model outputs. We utilize these results to select an ideal grid size that leverages
accuracy and computational cost. The prescribed element sizes are partitioned into
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Fig.9 Magnetic flux density output fields from FEniCSx and Ansys Maxwell for no-load and 280 A current
cases are shown here. A qualitative comparison shows agreement in overall field trends, with numerical
discrepancies at higher load cases. Despite qualitative agreement between the 280 A cases between FEniCSx
and Ansys Maxwell, we see a 14% error in the output torque

four distinct values, varying radially; the element sizes are not controlled globally
across the mesh, but rather around points that define the structure and subdomains
of the motor geometry. This is shown in Fig. 10a, where the prescribed element sizes
I1, 1o, I3, 14 vary radially based on the boundaries of the motor structure. The values of
the element sizes are determined by the dimensions and proximity of the surrounding
subdomains. This necessitates smaller element sizes in regions like the air gap and
stator teeth, where at least one dimension of the subdomain is small. Larger element
sizes are allowable around the mesh boundaries in the stator and rotor core, where
there are larger gaps between different subdomains.

To assess the influence of mesh element size, we analyze the electromagnetic torque
and core losses; these parameters depend directly on the magnetic flux field solutions.
The torque is computed directly from the vector potential solution in the air gap,
which assesses the validity of element sizes /3 and 4. Core loss, which is the sum of
hysteresis and eddy current loss, is calculated by integrating the solution field over
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Fig. 10 We vary the mesh element sizes for the grid independence study across three levels. Each mesh
corresponds to a value for /;, dictating an element size in a particular region of the geometry. The different
meshes had element counts of 32,274, 11,866, and 6122, respectively

Table2 We compared the torque
and core loss error percentage
for the medium and coarse (@) 1=30A
meshes relative to the fine mesh

Output Medium mesh (%) Coarse mesh (%)

Torque < 0.1 0.6

Core losses <1 4-6
(b) I=100A

Torque < 0.1 0.3

Core losses <1 5-6

Current load cases of I=30 A and =100 A were analyzed

the motor core; this output is influenced mainly by element sizes /1 and />. The grid
independence study is conducted for load cases of 30 A and 100 A.

The grid convergence error results shown in Table?2 are relative to the fine mesh;
the comparison for each output is done by varying the element sizes with the greatest
influence in the respective regions. For both load cases, the error for both parameters
increases as the mesh coarsens. The core losses exhibit noticeable errors for changes in
[1 and [;. The rotor and stator yokes require sufficiently fine element sizes to resolve the
vector potential distribution due to the zero-boundary condition. Large mesh elements
misrepresent the drop in the vector potential around the boundaries, especially with
higher magnitude loads. As the load increases, more elements are required to integrate
over the motor core with reasonable accuracy. The torque, on the other hand, remains
relatively unchanged for variance in /3 and /4. This is because the air gap is already
thin; having at least one radially intermediate node is sufficient to capture the flux
movement effects between the rotor and stator. Although the error percentages in the
coarse mesh are acceptable, the medium mesh will be utilized; the use of small element
sizes benefits the performance of the mesh warping solver, and this level of fineness
can balance accuracy and computation time.

4.3 System-level optimization demonstration
4.3.1 Optimization problem background

We demonstrate the motor design optimization methodology by optimizing the motor
design considering metrics at the aircraft system level. The reference vehicle is the
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Lift+ Cruise aircraft concept from NASA (Silva and Johnson 2021). We aim to opti-
mize the pusher motor.

The influence of the electric motor in the full system-level aircraft design can
be captured using the electric range equation. The electric range equation relates
basic aircraft operation to electric motor properties in the cruise condition under the
assumption of steady-level flight and is given by

Wi R 1 1
batt _ _g - . __c (32)
Wiotal Np E/mpa L/D

where W represents weight, R is the flight range, g is the gravitational constant, 7, is
the propulsive efficiency, E /mp,;; is the battery energy density and L/ D is the lift-to-
drag ratio. For this demonstration, the range, battery energy density, and lift-to-drag
ratio are all fixed. The propulsive efficiency 7, is a product of the efficiency of the
inverter 1;,,, motor 1,, and rotor 1,; we assume constant inverter and rotor efficiency.
We break down the aircraft into three main components and represent the total aircraft
mass as

Mtotal = Mmotor + Mbatt + Mairframe, (33)

where the airframe mass mg;y frame refers to the remaining parts of the aircraft. The
motor design has two significant roles in this approach. First, the geometric design of
the motor directly alters the motor mass 71,,:0r- Second, the battery mass is influenced
by motor efficiency. By rearranging (32) and converting the weight on the left-hand
side to mass, the battery mass can be represented as

Mpatr = m “(Mmotor + mairframe)9 (34)
where C is the parameter defined in (32). The dependency of motor efficiency on the
battery mass is seen through the overall propulsive efficiency 1, defined in (32).

4.3.2 Optimization problem

The goal is to optimize a baseline motor design with a comprehensive set of motor
design properties; this includes geometric and operational variables and constraints.
The objective function in the optimization problem is the total aircraft mass m;,s4;.
The problem is summarized in Table 3. The geometric variables, shown relative to
the motor geometry in Fig. 11, span all aspects of the motor cross-section. The motor
geometry determines the mass and the size contributes to the torque equality constraint.
The current and motor length are also introduced as design variables; these variables
have a significant role in the motor operation. For a fixed geometry, the current has
inverse effects on the output torque and efficiency. Thus, the current is a key design
variable in this optimization problem because there is a need to match the input torque
constraint whilst maintaining high efficiency for minimal battery mass. The motor
length dictates another opposing relationship between torque and mass. As the motor
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Table 3 We have described the optimization problem here

Minimize Variable my,:q; Description total aircraft mass Quantity

With respect to

Operational 100A < Lamp < 600A Current amplitude 1
Variables 60mm < L < 80mm Motor length 1
Rotor geometry —25mm < Tshaft < 10mm  Shaft radius 1
Changes —10mm < yr < 10mm  Rotor yoke thickness 1
—2mm < tm < 2mm Magnet thickness 1
—Imm < Srm < Imm Rotor-magnet clearance 1
— % rad < O, < % rad Magnet width 1
Stator geometry — I mm < dag < 1mm Air-gap thickness 1
Changes —1mm < tst < lmm Stator shoe thickness 1
—5mm < tsiot < 5mm Slot thickness 1
—10mm < Vs < 5mm Stator yoke thickness 1
— 007 rag < 4 < 0037 rad Slot width 1
Variables 12
Subject to =1 Torque balance 1
Viim < 800V Voltage limit
Constraints 2

We aim to minimize total aircraft mass with respect to geometric and operational design variables, subject
to a torque balance and voltage limit

length increases, both the torque and motor mass increase; this is beneficial to ensure
that torque equality is satisfied, but negatively impacts the overall objective.

A parameter sweep is conducted to optimize the motor across a set of design con-
ditions. The airframe mass is selected as the sweep parameter for two reasons. First,
the battery mass scales with the airframe mass, as seen in (34). Second, the airframe
consists of most of the aircraft mass, in comparison to the motor and battery; thus,
the operating RPM and torque necessary for steady-level flight are mostly dictated by
the airframe mass. These values are calculated as a pre-processing step before opti-
mization using a blade element momentum-based ideal loading design approach from
Ruh and Hwang (2021); given a required thrust, this method determines the torque,
RPM, and blade shape that minimizes aerodynamic losses. Under the assumptions of
steady-level flight and a constant lift-to-drag ratio, the required thrust for each case
in the parameter sweep can be calculated based on total aircraft weight. Although the
total aircraft mass during optimization will change, the magnitude of the changes in
battery and motor mass is small compared to the total aircraft mass; the expected vari-
ations in torque and RPM are small and negligible. Therefore, it is sensible to assume
a constant torque and RPM for each case in the parameter sweep. We use a gear ratio
of four.
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Fig. 11 A visual representation of the geometric design variables relative to the motor geometry is shown
here. The design variables represent changes in the geometric aspect

4.3.3 Comprehensive versus baseline optimization comparison

The parameter sweep was conducted under a set of six different airframe masses,
to optimize the motor design by minimizing total aircraft mass under a variety of
operating conditions. We performed a set of baseline and comprehensive design opti-
mizations for each case in the parameter sweep. The comprehensive motor design
optimization includes the detailed design of the motor cross-section. The baseline
case neglects changes in cross-sectional motor shape and only considers current and
motor length as design variables. Thus, the only variable affecting motor mass is the
motor length, a variable that also scales proportionally with the torque. This allows
us to assess the influence of the motor geometry on performance. Table 4 summarizes
the parameter sweep inputs and the results for the comprehensive design optimization,
and Fig. 12 compares the baseline and comprehensive shape optimization results.

The comprehensive design optimization cases produce an overall improved design
compared to the baseline optimization case; the benefits are amplified as the airframe
mass increases. Minimal improvements are seen in the total aircraft mass; however, this
is not unexpected, given that the airframe mass is constant and significantly larger than
the other mass components. The battery mass exhibits larger differences as airframe
mass increases, primarily due to the improvement in efficiency. Referring back to (34),
the battery mass depends on the efficiency, motor mass, and airframe mass. In general,
the motor mass is significantly smaller than the airframe mass. As a result, the changes
in battery mass are influenced mainly by the motor efficiency.

We can formulate a more informative comparison by analyzing the influence of
motor geometry. In general, torque is proportional to volume; more specifically, torque
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Fig. 12 A comparison of the baseline and comprehensive design optimization shows an improvement in
the overall design and results when geometric optimization is taken into account

scales with the geometry as such:
T« DL, (35)

where D and L represent the motor diameter and length, respectively. The freedom
for both the motor geometry and length to change allows the diameter to shrink to
reduce mass, whilst placing more emphasis on the motor length to meet the torque
constraint. This can also be leveraged to produce torque from the motor length rather
than the current amplitude, reducing copper losses and increasing efficiency. This
explains the improvement in efficiency between the baseline and shape optimization
results in Fig. 12.

4.3.4 Comparison of optimization results across parameter sweep cases

We can also draw comparisons between different cases in the parameter sweep. Each
case operates under a different torque and RPM, so different designs are expected
across the parameter sweep. The aircraft and battery mass exhibit similar trends;
referring back to Fig. 12, these two outputs display a monotonically increasing trend
with the airframe mass. The battery mass is driven by the airframe mass and efficiency;
the latter is heavily determined by the current amplitude, the driving force in attaining
the torque balance constraint. Copper losses scale quadratically with the current, so a
decrease in efficiency is expected with an increase in required output torque, and thus
the airframe mass.

Characterizing the variation of the optimized motor design across the parameter
sweep is not as straightforward. The motor mass exhibits a different trend relative
to the other components. The motor mass remains relatively constant for the lower
airframe masses and begins to increase halfway through the parameter sweep. The
larger airframe mass assumes a larger torque, so an increase in motor mass is expected
to produce additional torque without compromising the efficiency. Increases in current
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Table 5 The converged geometric design variables are shown in this table

Variable Units Parameter sweep case
1 2 3 4 5 6

Tshaft mm —15.0 —15.0 —15.0 —15.0 —15.0 —15.0
r mm —4.694 —-5.0 -5.0 -5.0 —4.490 —3.831
tm mm —0.406 —0.430 —0.440 —0.478 —1.517 —1.587
Srm mm -1.0 —-1.0 -1.0 -1.0 —-1.0 -1.0
Om 100 * rad —0.024 —0.048 —0.104 —0.309 —6.161 —6.725
8ag mm —0.987 -1.0 -1.0 -1.0 —-1.0 -1.0
tst mm —0.980 -1.0 -1.0 -1.0 1.0 1.0
tslot mm —2.407 —-25 —-25 2.532 2.140 4.994
Vs mm —4.352 -5.0 -50 -50 -5.0 -5.0
O 100 s rad 0.550 —0.094 —0.119 —0.336 —0.364 —0.838

The values represent the changes in that aspect of the geometry corresponding to Fig. 11. The bold correspond
to values that have converged to the bounds across the sweep

can compensate for the necessary increase in torque, but the resultant efficiency loss
subsequently increases battery mass. As a result, we see the mass of the optimal motor
design for higher airframe masses increase in comparison to the initial cases, as the
motor geometry plays a multi-faceted role in optimizing aircraft mass.

To further understand how the optimized motor design varies with torque, we can
analyze the variation in motor design variables across the parameter sweep. Table 5
contains the values of the converged geometric variables; the variables here represent
changes in that aspect of the geometry. We see that a considerable number of the design
variables have converged exactly to or very close to the boundaries, as shown by the red
and blue colored numbers. This is explained by the limitations of the physics modeled
within the methodology and the tight design variable bounds set to avoid unfavorable
mesh warping. These variables will either be kept constant or their bounds will be
expanded in future optimization studies. This also identifies the dependence of overall
motor operation on the remaining geometric design variables relative to the input
changes across the parameter sweep.

A subset of the design variables showing significant variance across the parameter
sweep is plotted in Fig. 13. Each line represents a case from the parameter sweep;
the vertical axes correspond to a design variable, and the limits correspond to the
design variable bounds during optimization. Similar to Table 5, the geometric design
variables on the plot represent changes in that aspect of the geometry. The largest
relative changes are visible in the current amplitude, the driving force behind meeting
the torque balance constraint, and the winding and slot dimensions, which play a role
in reducing the radial station of the stator core and adjusting the wire resistance based
on the available area of the slot. The latter parameters heavily dictate the geometric
influence on the overall power losses and motor efficiency. A subset of design variables
are omitted from the plot because they do not vary significantly throughout each
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Fig. 13 The variation of a subset of design variables is visualized in the parallel coordinates plot. Each case
in the parameter sweep converges to a different optimized design, and the magnitude of variation based on
airframe mass can be seen here

optimization case; this is due to the modeling limitations and the physics within the
methodology, discussed further in Sect.5.

The optimized geometries relative to the initial motor dimensions are shown in
Fig. 14. Each parameter sweep case began with identical motor dimensions; this allows
for a common reference when comparing optimized designs. We see a reduction in
overall size for each parameter sweep case; this is expected considering the objective
of minimizing overall aircraft mass. For the high torque cases, additional changes in
the optimal layout are seen around the magnets and stator slots, as the geometry tries
to compensate for the higher current needed to satisfy the higher load.

To more clearly identify the geometric differences across the parameter sweep,
Fig. 15 shows a one-sixth slice of each motor with the geometric design variabes
overlaid onto the geometry. Each slice corresponds to a parameter sweep case from
Table 5, identified by the large enclosed number near the inner radius. In the latter
parameter sweep cases (four to six), we start to see significant geometric changes
as a result of the increased torque demand. The motor structure is manipulated to
simultaneously produce torque and minimize the core and copper losses coming from
the high current necessary to produce satisfactory torque and maximize efficiency for
the battery.

The limitations of the current methodology are centered around the tight bounds
on the geometric design variables, motivated by the difficulties of our mesh warping
technique. Mesh warping is prone to generating highly skewed mesh elements, which
can lead to poor solver performance; an example of this is shown in Fig. 16. Under a
constant mesh parameterization, the elements around the magnet and air gap become
highly skewed from large changes in the magnet width. This is a consequence of
utilizing a constant mesh parameterization throughout the optimization. Although
re-meshing and reparameterization of the mesh during optimization would solve this
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Fig. 14 A comparison of the original and optimized motor geometries for each case shows a general
reduction in size. The latter cases (4—06) differ more due to the higher torque demand, resulting in the further
detailed design of the stator and magnet dimensions

issue, these are discrete operations and are not feasible for gradient-based optimization.
As aresult, tight geometric design variable bounds have been set to avoid this issue. A
caveat to this decision is the freedom of the motor geometry to change is limited, and
resultant optimized motor designs are falsely constrained by design variable bounds
rather than physics. Figure 14 shows side-by-side comparisons of initial and optimized
geometries for each parameter sweep case. Although the internal motor structure shows
variation, many of the geometric variables approach the same value due to the tight
bounds. An example of this is the shaft diameter, which is dictated by the maximum
shear stress of the shaft material; however, the shaft diameter bound was reduced
to prevent significant skewing of the rotor mesh elements. An alternative approach
is necessary to allow for larger geometric changes without compromising the mesh
quality.

5 Conclusion

In this paper, we have presented an adjoint-based motor design optimization method-
ology for high-dimensional design problems. This methodology is motivated by the
poor scaling of computational time with respect to the number of design variables, a
roadblock prevalent in existing motor design approaches. Free-form deformation is
incorporated to parametrize the motor geometry in a differentiable manner. A PDE-
based mesh warping algorithm is utilized to manipulate the mesh; the mesh boundary
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Variable

Description

Tshaft

Shaft radius

Yr

Rotor yoke
thickness

Magnet
thickness

Rotor magnet
clearance

Magnet width

Air-gap
thickness

Stator shoe
thickness

Slot thickness

Stator yoke
thickness

Slot width

Fig. 15 We compare the optimized design from each parameter sweep case with the geometric design
variables overlaid on the geometry. The large numbers within the circles correspond to the parameter sweep
case indices shown in Table 5. Some variables like 7;;,,; experience significant changes between cases, while

others like rgjqf; do not

Fig. 16 Large geometric changes can lead to highly skewed mesh elements. The significant width reduction
of the magnet causes skewing in the mesh elements and makes the solvers more prone to divergence
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conditions are applied using fractional load-stepping, and the updated mesh is found
by solving a sequence of nonlinear problems with small deformations. The motor
analysis is conducted using high-fidelity finite element analysis by solving Maxwell’s
equations. The resultant output field is utilized to calculate high-level parameters,
such as power losses, torque, and efficiency. Derivatives are computed analytically for
each method. As a result, even though model evaluation is expensive, the derivative
computation cost is reduced using the adjoint method, and updating the motor design
is efficient.

The methodology was demonstrated using an aircraft system-level design problem,
in which it searches for a motor design that minimizes aircraft mass across a series
of operating conditions. A baseline optimization case with a fixed motor shape is
analyzed for comparison. Results show marginal improvements in aircraft mass for
each case in the parameter sweep; this is due to the small mass ratio between the motor
and battery relative to the entire aircraft. Improvements of up to 35% in motor mass and
3% in motor efficiency are found. The results indicate the feasibility and success of an
adjoint-based motor design optimization approach; we see improvements in the overall
design, and the shape optimization results show that efficient exploration of the full
design space is possible using adjoint-based optimization. Future development of this
work has two distinct avenues: improving the modeling of the physics and addressing
solver ill-conditioning due to large geometric deformations.

The first area of future work addresses the shortcomings of the motor analysis
model. The torque error shown in Table 1 and flux field qualitative differences in
Fig.9 can be attributed to the permeability model and torque computation approach.
Alteration to the permeability model is required, as the curve fit visualized in Fig.2
deviates from the data in the flux-density-magnitude range expected within the motor
air-gap. In addition, we assume the direction of the air-gap flux density is purely radial.
A higher fidelity method, such as virtual work or the Maxwell stress tensor, is more
suitable to calculate torque using the FEA field solution. The current methodology also
does not utilize periodicity, a key property of electric motor operation. Periodicity
is incorporated by modeling a fraction of the motor geometry swept by one pole
pair. This concept is commonly used for motor analysis (Ahn et al. 2015; Yamazaki
and Ishigami 2010; Pellegrino and Cupertino 2010; Lin et al. 2018) as a means to
reduce computational expense. In addition, coupled multiphysics models are required
to accurately capture the influences from other disciplines. This includes thermal
constraints to model demagnetization and temperature dependence of power loss,
and structural considerations related to harmonics and maximum stresses. Feedback
coupling of the temperature distribution is necessary to capture the proper thermal
effects in the electromagnetic analysis (Babcock et al. 2023).

The second major area of future work addresses the issue of solver ill-conditioning
due to significant skewing of mesh elements. In the current work, small geometric
design variable bounds are applied to avoid this issue. Improvements to the current
mesh adjustment approach are required to allow for larger geometric changes in the
motor design. The current method suffers from severe mesh element warping due to the
constant mesh parameterization. To adjust the mesh information during optimization,
we can integrate an outer-loop geometry refinement step to reset the mesh and FFD
parameterization. The outer loop can be automatically called based on mesh quality
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Optimizer
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optimization
Model
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Fig. 17 The outer-loop geometry reparameterization would be integrated in the manner shown here. The
geometric design variables dg update the base geometry and regenerate the parameterization, and the
optimization continues from the updated geometry

metrics like skewness and aspect ratio; during this step, the mesh of the new motor
geometry is regenerated with the most recent geometric deltas. The inner optimiza-
tion loop is then restarted and initialized with the design variables of the previous
optimization run. This process is shown visually in Fig. 17.

This concept has been utilized by He et al. (2019) to conduct aerodynamic shape
optimization, showing a circle transforming into an airfoil; the FFD parameterization
is adaptively updated by exiting the optimization loop to adjust the FFD control points
using an adaptation metric. To expand the geometric freedom of the shape optimization
approach, this is a promising avenue for future work.
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