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A B S T R A C T   

The state-of-health (SoH) estimation based on the constant-voltage (CV) charging data has been an interesting 
research topic in recent years. However, most of the existing estimation methods based on CV charging data are 
sensitive to the cut-off condition and/or require a relatively high storage resource as well as computing power, 
preventing the feasibility in real world applications. To extend the scope of the estimation method based on CV 
charging data, this paper proposes a quick and robust battery capacity estimation method using a two-layer CV 
charging time (TCV)-based model. First, the evolution of TCV-based SoH model with respect to different cut-off 
currents is investigated, and the detailed mathematical expressions of the model coefficients are derived based 
on the decoupled dynamic characteristics of the CV charging current. Second, considering the actual sampling 
periods (Tss) utilized in the online application, a Ts-adaptive moving average filter is proposed to filter the high- 
frequency measurement noise. Third, experimental results demonstrate that the proposed method can determine 
SoH with a root-mean-square error of less than 2.05% for two types of tested batteries under different charging 
protocols. In addition, the comparison study further highlights the superiority of the proposed method in terms of 
robustness, accuracy, computational cost, and storage consumption.   

1. Introduction 

Lithium-ion batteries have become a promising battery technology 
due to the advantages of high energy density, high power, and relatively 
long cycle life [1,2]. They have been extensively used, ranging from low 
power consumer electronics [3,4], to high power traction applications 
[5,6]. For example, in traction applications like electric vehicles (EVs), 
lithium-ion batteries are widely used as the energy storage system in 
battery powered or hybrid electric vehicles to help reduce gas emission 
and fossil fuel consumption. The battery capacity is one of the core 
parameters to evaluate the battery performance. The actual capacity 
degrades as the battery cycles, which influences the driving range of the 
vehicle, and further increases the “range anxiety” [7]. Therefore, it is 
essential to monitor the battery state-of-health (SoH) related to the en-
ergy capability in real-time for the safe and reliable battery utilization 
[8,9]. 

1.1. Literature review 

Extensive research efforts have been focused on the estimation of 
battery SoH in recent years, which can be roughly categorized into 
discharging data-based and charging data-based methods in terms of the 
working conditions. 

The discharging data-based methods can be further divided into in-
direct estimation and direct identification methods. For the first type, 
the model parameters and the battery capacity or other aging-sensitive 
parameters are generally combined into a state vector, and identified 
through a series of adaptive algorithms, such as least squares estimation- 
based [10], filter-based [11], and observer-based techniques [12]. It 
should be noted that the performance of the adaptive algorithm strongly 
depends on the employed model structure and the algorithm parame-
ters. As for the second type, the vehicle driving data (current, voltage, 
and temperature) recorded by the battery management system (BMS) 
are directly used or investigated to extract the feature-of-interests (FoIs) 
reflecting the battery capacity degradation. Then, considering these 
variables as input features, some machine learning techniques, such as 
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support vector machine, Gaussian process regression, relevance vector 
machine, and so on, can be utilized to train an SoH model [13–15]. 
Generally, more computational cost is required with the increasing 
number of input features. With the development of cloud computing in 
recent years, this kind of methods has great potential to be implemented 
in EV applications [16]. 

Unlike the dynamic and random discharging scenario, the charging 
scenario is relatively simple, stable, and predictable, thus the charging 
data have been widely adopted for the battery SoH estimation. One of 
the commonly used charging data-based methods is differential analysis 
technique, which mainly includes incremental capacity analysis (ICA) 
[17,18], differential voltage analysis (DVA) [19,20], and differential 
thermal voltammetry (DTV) [21,22]. Through the differential opera-
tion, the plateaus regions on the measured terminal voltage or the sur-
face temperature curve under the long-term constant-current (CC) 
charging scenario can be transformed to the identifiable peak/valleys on 
the differential curve. It has been proved that the height, area, and 
location of the relevant peak/valleys are effective FoIs, and can be 
employed to establish the SoH estimation model [16]. However, two 
main disadvantages exist concerning the differential analysis methods. 
Firstly, this kind of methods is sensitive to the current rates. For 
example, to reduce the influence of the polarization effect, ICA/DVA 

methods are usually implemented at the moderate or even low current 
rates [16,23]. While for the DTV method, a higher current rate is 
preferred to guarantee observable heat generation. Secondly, the 
long-term CC charging process is required to obtain the comprehensive 
peak/valley information. Nevertheless, in practical applications like 
EVs, the discharging process is strongly dependent on the driving habits 
and battery is rarely fully discharged, which subsequently influences the 
initial charging state. In addition, to reduce the charging time and 
improve the energy transfer efficiency, multistage CC charging protocol, 
which contains multiple short-term CC charging processes with different 
current rates, has been widely used in EVs. Under the above working 
conditions, FoIs cannot be effectively extracted by the differential 
analysis method. To overcome these limitations, Ref. [24] proposed a 
deep-learning approach to estimate the entire CC charging curves only 
based on the small portions of the charging data, and thus the battery 
capacity can be extracted under the incomplete charging scenario. In 
order to reduce the influence of current rate on the ICA, Ref. [25] pro-
posed a robust battery SoH prediction method to correct the peak shift 
through polarization compensation. With respect to the fast charging 
scenario, Refs. [26,27] investigated the evolution of battery terminal 
voltage under multistage CC charging scenario, and extracted several 
FoIs from the partial charging curve to correlate with the battery 

Nomenclature 

ai, i = 1-3 Parameters of SoH model 
bi, i = 1-5 Parameters of SoH model 
B Intercept of linear function 
Cap Battery capacity [Ah] 
Capest Estimated battery capacity [Ah] 
Capnom Nominal battery capacity [Ah] 
ECV Energy of constant-voltage charging process 
f(•) Parameter function 
f Frequency of input signal [Hz] 
fcut Cut-off frequency [Hz] 
ICC Constant-current charging current [A] 
Icut Cut-off current [A] 
Imea Measured current [A] 
Iavg Filtered current [A] 
Ilow Lower limit of current range [A] 
Iup Upper limit of current range [A] 
I1 Fast-dynamic current [A] 
I2 Slow-dynamic current [A] 
K Slope of linear function 
ki, i = 1-4 Parameters of SoH model 
Nd Total number of data points 
Nb Buffer length 
r Correlation coefficient 
R2 R-square 
TCV Constant-voltage charging time [s] 
Ts Sampling period [s] 
Tw Window length 
t Time [s] 
tend Time instant at the end of the constant-voltage charging 

process [s] 
tFoI Computational cost of feature-of-interest extraction [s] 
tmodel Computational cost of offline model construction [s] 
t0 Time instant at the beginning of the constant-voltage 

charging process [s] 
Vlow Lower limit of voltage range [V] 
Vup Upper limit of voltage range [V] 
Vt Battery terminal voltage [V] 
x Independent variable 

x‾ Mean value of independent variable 
y Observation variable 
y‾ Mean value of observation variable 
τCV Time constant of the decoupled constant-voltage charging 

current [s] 
τ1 Fast-dynamic time constant [s] 
τ2 Slow-dynamic time constant [s] 

Subscripts 
aged aged state 
avg filtered 
cut cut-off 
est estimated 
mea measured 
new new state 
nom nominal 
on online 
off offline 

Greek symbols 
Δ A change in the value 
τ Time constant [s] 
ω Radian frequency [Hz] 

Acronyms 
BMS Battery management system 
CC Constant-current 
CV Constant-voltage 
DTV Differential thermal voltammetry 
DVA Differential voltage analysis 
EV Electric vehicle 
FNN Feedforward Neural network 
FoI Feature-of-interest 
ICA Incremental capacity analysis 
LFP Lithium iron phosphate 
MAF Moving average filter 
NCA Nickel cobalt aluminum oxide 
PA Peak area 
RMSE Root mean-square error 
SoH State-of-health  
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capacity degradation. In addition, Ref. [28] introduced the battery ter-
minal voltage at 80% SoC for about 10 min as the FoI, and proposed a 
long short-term memory-fully connected network to deal with battery 
inconsistency caused by fast charging. 

It has been found that the constant-voltage (CV) charging protocol 
applied after the CC charging process can effectively reduce the elec-
trode polarization and slow down the battery degradation rate [29,30]. 
In addition, compared to the CC charging process, the CV charging 
process is more robust to the preceding discharging process and flexible 
with the initial charging state. Hence, identifying the battery SoH based 
on CV charging data has been an interesting topic and has attracted wide 
attention in recent year. The relevant research work has revealed that 
the charging time [31–33], the capacity [34], the time constant [35,36], 
and the energy [37,38] extracted based on the CV charging data are 
effective FoIs to characterize the battery aging state. Among them, the 
CV charging time (TCV) is a simple and direct FoI because it can be ob-
tained as soon as the CV charging process is complete, and no sophis-
ticated parameter identification procedure is required. However, TCV is 
sensitive to the cut-off condition. The random and uncertain factors in 
practical application may compromise the estimation performance. 
Besides, due to the gradually decreasing current, the CV charging pro-
cess is time-consuming, especially when the charging current is below a 
certain value. Hence, some charging strategies perform the CV charging 
process for a certain duration [39], where the conventional TCV-based 
SoH estimation method cannot work. Considering the partial CV 
charging process, the indirect FoIs are generally extracted to estimate 
the battery SoH. For example, Ref. [35] employed the current time 
constant as the input of the established SoH estimation model, and 
developed a logarithmic function-based prediction model to estimate 
the reference current time constant. In addition, Ref. [34] selected the 
CV capacity as the FoI, and iteratively incorporated the Q-V modeling 
with the open-circuit voltage estimation to reconstruct the complete CV 
phase. The verification results demonstrated the satisfactory SoH esti-
mation performance even under the partial CV charging scenario. It 
should be noted that for the indirect FoI-based SoH estimation method, 
the charging data during the CV process should be recorded to identify 
the model parameters, at the expense of high storage consumption, 
especially for the battery system with the long-time CV charging process 
and/or high sampling frequency. Besides, the parameter identification 
procedure consumes the computing power of the on-board 
microcontroller. 

1.2. Motivations and contributions 

It can be concluded from the previous study that the existing CV 
charging data-based SoH estimation methods using indirect FoIs 
generally suffer from high storage resource and computing power. While 
for the direct FoI-based method, two main challenges are summarized as 
follows:  

(1) Sensitive to the cut-off condition: the conventional TCV-based 
SoH model is established under a specific cut-off condition, i.e., 
the constant cut-off current (Icut). This limits the utilization of this 
method in real-world applications with random and uncertain 
Icuts.  

(2) Limited to the constant sampling period: in the existing study, 
the sampling periods in the offline identification and online 
estimation procedures are generally considered as the same 
value. However, to save memory space for the on-board BMS, a 
flexible sampling frequency is recently introduced in real world 
applications [40]. This may reduce the generalization capability 
of the established SoH model. 

Hence, there is still room to improve the CV charging data-based 
method, in terms of simultaneously reducing complexity and 
improving robustness. To bridge the aforementioned research gap, a 
robust and computationally efficient TCV-based SoH estimation method 
is proposed in this paper. The main contributions are summarized as:  

(1) Established a two-layer TCV-based SoH model insensitive to 
the cut-off condition: the evolution of the correlation between 
the battery capacity and TCV with respect to different Icuts is 
investigated. Subsequently, based on a second-order exponential 
model developed in our previous work [41], the coefficients of 
the TCV-SoH correlation are mathematically characterized as 
functions of Icut.  

(2) Proposed a sampling period-adaptive filter: the influence of 
the window length on the performance of a moving average filter 
(MAF) is discussed in the continuous-time domain. Then, based 
on the sampling periods utilized in the offline test and the online 
application, an adjustment method of the reserved buffer length 
is proposed to realize a sampling period-adaptive MAF. 

(3) Validated the effectiveness under different charging condi-
tions: based on two battery degradation datasets, the estimation 
performance is systematically evaluated under different CV 
charging scenarios, including the constant Icut cut-off condition, 
the constant TCV cut-off condition, and the different sampling 
periods. In addition, the conventional TCV-based and some other 
state-of-art estimation methods are employed to conduct a 
comparative study. 

2. Model establishment 

2.1. Model evolution 

Based on the existing research [32,42], due to the increased resis-
tance and the decreased diffusion at the electrode/electrolyte interface, 
TCV generally increases with the degrading battery capacity (Cap) for a 
certain Icut, as schematically shown in Fig. 1(a), where the measured 

Fig. 1. Schematic representation of (a) Cap versus TCV for a certain Icut; (b) CV charging currents at different aging states (exemplarily with the measurements from 
the tested LFP battery). 
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points are extracted from the test data of the employed lithium iron 
phosphate (LFP) battery. Considering the tendency of the related data, 
the linear function expressed as (1) is employed to describe the rela-
tionship between Cap and TCV, where Capest denotes the estimated bat-
tery capacity, K and B denote the slope and the intercept of the linear 
function, respectively. 

Capest =KTCV + B (1) 

As shown in Fig. 1(a), K can be further expressed as 

K =
ΔCap
ΔTCV

=
Capaged − Capnew

TCV,aged − TCV,new
(2)  

where ΔCap and ΔTCV denote the change of Cap and TCV respectively, 
Capnew and Capaged denote the battery capacity in the new and aged 
states, respectively, TCV,new and TCV,aged denote TCV corresponding to the 
new-state and aged-state batteries, respectively. 

It is evident from (2) that for a certain ΔCap, the value of K depends 
on ΔTCV. The battery CV charging current curves at different aging states 
are schematically presented in Fig. 1(b). It can be observed that in a 
certain aging state, there exists a specific one-to-one mapping correla-
tion between the CV charging current and the time instant, thus ΔTCV 
can be expressed as a variable with respect to Icut, i.e., 

ΔTCV =TCV,aged − TCV,new = fTCV,aged (Icut) − fTCV,new (Icut)= fΔTCV (Icut) (3)  

where fTCV,new (Icut), fTCV,aged (Icut), and fΔTCV (Icut) denote the functions map-
ping Icut to TCV,new, TCV,aged, and ΔTCV, respectively. 

It can be concluded from (1) to (3) that the coefficients of the cor-
relation between Cap and TCV demonstrate diverse values with respect to 
different Icuts, as exemplarily illustrated in Fig. 2. 

Therefore, Eq. (1) can be further expressed as 

Capest = fK(Icut)TCV + fB(Icut) (4)  

where fK(Icut) and fB(Icut) denote the functions mapping Icut to K and B in 
(1), respectively. 

Hence, in order to extend the scope of the TCV-based SoH estimation 
method and improve the robustness of this method under different CV 
charging conditions, the correlations between Cap and TCV corre-
sponding to different Icuts are required to be established in advance. 

2.2. Mathematical expression of model 

According to the aforementioned analysis, the evolution of K with 
respect to Icut is closely related to the change of ΔTCV with Icut. Hence, it 
is critical to establish the correlation between ΔTCV and Icut. Based on 
our previous work, the charging current under CV scenario can be 
quantitatively expressed as the sum of two current components with 
different scales of time constants [41], i.e., 

I(t)= I1(t) + I2(t) = I1(0)e−
t

τ1 + I2(0)e−
t

τ2 (5)  

where t denotes the CV charging time, and t = 0 denotes the start of the 
CV charging process, I1(t) and I2(t) denote the fast-dynamic and the 
slow-dynamic currents, respectively, τ1 and τ2 denote the time constants 
corresponding to I1(t) and I2(t), respectively, and τ1 < τ2. 

The evolution of I(t), I1(t) and I2(t) are schematically shown in Fig. 3. 
It can be seen from Fig. 3 that at the end of the CV charging process, 

I1(t) has converged to zero due to the fast-dynamic characteristic, and I 
(t) at this stage mainly contains I2(t), as 

I(t)= I2(0)e−
t

τ2 (6) 

Therefore, TCV is mainly determined by the slow-dynamic current 
component. Based on (6), the expression of TCV with respect to Icut is 

TCV = − τ2 ln[Icut / I2(0)] (7) 

Specifically, τ2 and I2(0) can be obtained based on the nonlinear least 
squares method, and the identified parameters are closely related to the 
predefined Icut, which is equivalent to the size of the dataset. The evo-
lution of identified τ2 and I2(0) corresponding to different Icuts is 
exemplarily shown in Fig. 4. The fitted linear regression functions are 
also presented in the figure for a quantitative comparison. 

It can be observed from Fig. 4 that both τ2 and I2(0) demonstrate 
strong dependencies with Icut. In addition, the change magnitude of I2(0) 
is far more less than the change magnitude of τ2, thus the value of I2(0) 
can be approximately regarded as constant. Therefore, τ2 and I2(0) can 
be further expressed as τ2 = a1Icut + a2 and I2(0) ≈ a3, respectively. 

Based on the aforementioned analysis, the detailed expression of 
ΔTCV with respect to Icut is 

Fig. 2. Correlations between Cap and TCV at different Icuts (exemplarily with the 
test data from the adopted LFP battery). 

Fig. 3. Schematic representation of CV charging current and decou-
pled components. 

ΔTCV = TCV,aged − TCV,new − τ2,aged ln
[
Icut

/
I2,aged(0)

]
+ τ2,new ln

[
Icut

/
I2,new(0)

]
=

(
− τ2,aged + τ2,new

)
ln(Icut)+ τ2,aged ln

[
I2,aged(0)

]
− τ2,new ln

[
I2,new(0)

]

= (k1Icut + k2)ln(Icut)+ k3Icut + k4 = fΔTCV (Icut) (8)   
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where τ2,new and τ2,aged denote τ2 for the new-state and aged-state bat-
teries, respectively, I2,new(0) and I2,aged(0) denote I2(0) for the new-state 
and aged-state batteries, respectively, k1, k2, k3, and k4 denote the 
function coefficients required to be identified. The above parameters 
satisfy 

τ2,new = a1,newIcut + a2,new
τ2,aged = a1,agedIcut + a2,aged
I2,new(0) = a3,new
I2,aged(0) = a3,aged
k1 = − a1,aged + a1,new
k2 = − a2,aged + a2,new
k3 = a1,aged ln

(
a3,aged

)
− a1,new ln

(
a3,new

)

k4 = a2,aged ln
(
a3,aged

)
− a2,new ln

(
a3,new

)

In addition, for a certain Cap, B in (1) can be further expressed as a 
function of Icut, i.e.,  

where b1, b2, b3, b4, and b5 are function coefficients required to be 
identified, and satisfy 

b1 = Cap
b2 = − a1ΔCap
b3 = − a2ΔCap
b4 = a1ΔCap ln(a3)

b5 = a2ΔCap ln(a3)

It can be concluded that with the knowledge of Icut, the correlation 
between Cap and TCV can be obtained online by using the established 
function expressed as (8) and (9). Subsequently, the actual battery ca-
pacity can be identified by substituting TCV into the obtained 
correlation. 

3. Sampling period-adaptive moving average filter (MAF) 

In order to reduce the influence of the high-frequency measurement 
noise on the current measurement, the moving average filter (MAF) is 
utilized in this study due to the advantages of simple realization and low 

computational cost [43]. 

3.2. Characteristic analysis of MAF 

The MAF calculates the output by averaging a series of input data 

Fig. 4. Evolution of (a) τ2 and (b) I2(0) with respect to Icut (exemplarily with the test data from the adopted LFP battery).  

Fig. 5. (a) Magnitude and (b) phase responses of MAF with respect to frequency.  

B=Cap −
[
ΔCap

/
fΔTCV (Icut)

]
{ − τ2 ln[Icut / I2(0)]} = Cap −

[
ΔCap

/
fΔTCV (Icut)

]
[ − (a1Icut + a2)ln(Icut)+ (a1Icut + a2)ln(a3)]

= b1 − [(b2Icut + b3)ln(Icut)+ b4Icut + b5]
/

fΔTCV (Icut) = fB(Icut) (9)   
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within a certain window length (Tw), and the relevant expression in 
continuous-time domain is [44]. 

Iavg(t)=
1

Tw

∫ t

t− Tw

Imea(τ)dτ (10)  

where Imea and Iavg denote the measured and the filtered current, 
respectively. 

Based on (10), Eq. (11) can be obtained after the Laplace 
transformation. 

Iavg(s)=
(
1 − e− sTw

)
Imea(s)

/
Tws (11) 

Substituting s = jω into (11), the transfer function of MAF (HMAF) is 

HMAF(jω)=
Iavg(jω)
Imea(jω)

=
1 − e− jTwω

jTwω =

⃒
⃒
⃒
⃒
sin(ωTw/2)

ωTw/2

⃒
⃒
⃒
⃒e

− jωTw/2 =

⃒
⃒
⃒
⃒
sin(πfTw)

πfTw

⃒
⃒
⃒
⃒e

− jπfTw

(12)  

where ω and f denote the radian frequency and the frequency of the 
input signal, respectively, and ω = 2πf. 

The magnitude and phase responses of MAF with different Tws are 
shown in Fig. 5, and the corresponding cut-off frequencies (fcuts) are 
marked in Fig. 5(a). As can be seen, the high-frequency components are 
overall attenuated by the MAF, which is similar to the characteristic of 
an ideal low-pass filter. Besides, fcut monotonically reduces as Tw in-
creases, which will lead to more amplitude attenuation and larger phase 
lag for the filter output. Hence, the characteristic of the MAF output is 
closely related to the value of Tw. 

3.2. Discrete-time realization 

Based on (10), the discrete-time expression of MAF is [44]. 

Iavg(t)=
1

Nb

∑Nb − 1

k=0
Imea(t − kTs) (13)  

where Ts denotes the sampling period, Nb denotes the length of the 

buffer to store Imea, and Tw = NbTs. Specifically, the “first-in, first-out” 
method is utilized to manipulate the current measurements, and the 
filter algorithm is only conducted at the end of the CV charging process. 

According to the aforementioned analysis, the performance of the 
MAF is mainly influenced by Tw, which is dependent on Nb and Ts. In the 
practical BMS, considering the storage and computation capabilities of 
the employed microcontroller, Ts may be different from that utilized in 
the offline test [26,40]. If Nb in (13) is not adjusted according to the 
actual Ts, the trajectory of the filtered current will demonstrate different 
dynamic characteristics even in the same aging state, which will dete-
riorate the battery capacity estimation accuracy. Therefore, to ensure 
the generality of the established correlation, the actual buffer length in 
the practical application (Nb,on) should yield to 

Tw,on =Tw,off ⇒ Nb,on =Nb,off
(
Ts,off

/
Ts,on

)
(14)  

where Nb,off is the buffer length utilized in the offline correlation 
establishment procedure, Tw,off and Tw,on denote the window lengths 
used in the offline and online procedures, respectively, Ts,off and Ts,on 
denote the offline and online sampling period, respectively. 

4. Framework of the proposed method 

The scheme of the proposed battery capacity estimation method is 
shown in Fig. 6. It mainly includes two parts, i.e., offline identification 
and online estimation. 

The offline identification process is conducted based on the test data 
of the selected reference battery, and it mainly consists of two layers. In 
the first layer, the CV charging current is smoothed using the MAF, and 
the employed Nb,off as well as Ts,off are recorded for the online estima-
tion. Then, for a specific current range [Ilow, Iup], the correlations be-
tween Cap and TCV corresponding to different Icuts are fitted at a certain 
current interval ΔI, i.e., K and B in (1) corresponding to Ilow + kΔI [k = 0, 
1, 2, …, (Iup-Ilow)/ΔI] are obtained. In the second layer, k1-k4 in (8) are 
identified by fitting the relationship between 1/K and Icut, then b1-b5 in 
(9) are further determined by fitting the relationship between B and Icut. 
Lastly, the obtained k1-k4 and b1-b5 are stored in the on-board 

Fig. 6. Proposed battery capacity estimation scheme.  
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microcontroller for the online estimation. 
The online estimation process can be summarized as four steps. In 

step 1, the time instants at the beginning (t0) and the end (tend) of the CV 
charging process are recorded. Besides, according to Ts,on, Nb,on is 
adjusted based on (14), and the measured current is stored in a buffer 
during the CV charging process. In step 2, the recorded data is pre-
processed when the CV charging process is finished. TCV is derived by 
subtracting t0 from tend, i.e., TCV = tend-t0. Meanwhile, the filtered Icut is 
obtained by applying the MAF on the data stored in the buffer. In step 3, 
according to the filtered Icut, the quantitative correlation between Cap 
and TCV can be established by using (8) and (9), which have been 
determined in the offline identification process. In step 4, the actual 
battery capacity can be obtained by substituting TCV into the correlation 
established in step 3. 

5. Experimental validation and discussion 

5.1. Experimental setup and test procedure 

Two groups of lithium-ion batteries, including four 2.5 Ah LFP bat-
teries (numbered from #1 to #4) and three 4.8Ah nickel cobalt 
aluminum oxide (NCA) batteries (numbered from #5 to #7), are 
adopted for the test. Specifically, the batteries in each group are selected 
with the similar characteristics, thus the influence of the battery 
inconsistency on the estimation result is not considered in this study 

The tests for the LFP batteries are performed by an 8-channel Arbin 
BT2000 cycle-based tester, and all three NCA batteries are charged/ 
discharged by a 16-channel NBT5V20AC16-T battery cycler. All of the 
tests are conducted at the temperature around 25 ◦C, and the test data 
are recorded with the predefined Ts of 1 s. The test procedures are 
presented in Table 1.In this study, all single battery results are based on 
the test data of batteries #1 and #5 for the LFP and the NCA batteries, 
respectively. 

5.2. Analysis of offline identification performance 

A. Determination of Icut range 
It can be concluded from Section 4 that in the offline identification 

process, the correlation between Cap and TCV should be established in a 
certain range of Icut, that is, [Ilow, Iup]. Hence, it is critical to determine an 
appropriate range of Icut according to the dynamic characteristics of the 
CV charging current at different aging states. The evolution of the CV 
charging current throughout the aging process is shown in Fig. 7. As can 
be seen, for LFP battery, the variation rate of the current curve overall 
decreases as cycle number increases, which means that TCV corre-
sponding to a certain Icut possesses an increasing trend with respect to 
the degrading capacity. By contrast, for NCA battery, the time for the 

Table 1 
Battery test procedures.  

Procedure LFP NCA 

1 Cycling tests 
1.1 Charge process CC charge at 1 C-rate CCCV charge at 0.5 C-rate 
1.2 Rest process 0 min 30 min 
1.3 Discharge process CC discharge at 4 C-rate CC discharge at 0.5 C-rate 
1.4 Rest process 0 min 60 min 
2 Characterization tests 
2.1 Charge process CCCV charge at 0.5 C-rate CCCV charge at 0.5 C-rate 
2.2 Rest process 60 min 30 min 
2.3 Discharge process CC discharge at 1 C-rate CC discharge at 0.5 C-rate 
2.4 Rest process 60 min 60 min  

Fig. 7. CV charging current curves for (a) battery #1 and (b) battery #5 after different cycles.  

Fig. 8. Evolution of |r| with respect to Icut for (a) battery #1 and (b) battery #5.  
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current to decline to approximately 0.74 A are almost identical at 
different aging states, as shown the point A in Fig. 7(b), indicating that 
the corresponding TCV cannot be used to reflect the battery capacity loss. 

The correlation coefficient (r) is utilized to further determine the 
appropriate range of Icut, and r is expressed as [36]. 

r=

∑Nd

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nd

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nd

i=1
(yi − y)2

√ (15)  

where x and y represent TCV and the battery capacity, respectively, x‾ 
and y‾ denote the mean values of x and y, respectively, Nd denotes the 
total number of data points for four LFP or three NCA batteries. The 
evolution of the absolute values of the correlation coefficient (|r|) versus 
Icut is shown in Fig. 8. 

As can be seen, |r| for the tested LFP battery is generally larger than 
0.95, and the values progressively approaches 1 with the increasing Icut, 
that is, Cap demonstrates a stronger linear dependency on TCV with 
higher Icut. For the employed NCA battery, there is a sudden drop of |r| at 
around 0.74 A, which is consistent with the trend of the current evolu-
tion shown in Fig. 7(b). Besides, although the correlation is significantly 
improved when Icut is larger than 0.74 A, the corresponding |r|s are still 

Fig. 9. Evolution of model coefficients with respect to Icut. (a) 1/K for battery #1. (b) B for battery #1. (c) 1/K for battery #5. (d) B for battery #5.  

Table 2 
Identified model coefficients.   

LFP NCA 

[k1, k2, k3, 
k4] 

[2.045 × 103, 2.130 × 103, 
− 3.615 × 103, 3.533 × 103] 

[9.574 × 10− 7, 2.853 × 103, 
− 2.967 × 103, 3.155 × 103] 

R2 of fitted 
1/K 

0.9999 0.9999 

[b1, b2, b3, 
b4, b5] 

[2.458 × 102, 2.256 × 10, 
− 2.387 × 102, 2.434 × 102, 
2.827] 

[1.262 × 10− 3, 1.820 × 103, 
− 4.200 × 103, 5.010 × 103, 5.400] 

R2 of fitted 
B 

0.9755 0.9998  

Fig. 10. Schematical representation of three verification cases. (a) Constant Icut cut-off condition. (b) Constant TCV cut-off condition. (c) Different Ts,ons.  
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less than the values in the lower Icut range. This is because within this Icut 
range, there is no obvious one-to-one mapping correlation between Cap 
and TCV when Cap degrades less than 4 Ah, as shown in the inset of Fig. 8 
(b). Based on the above analysis, the ranges of Icut for the tested LFP and 
NCA batteries are determined as [0.15, 1.0] and [0.25, 0.45] A, 
respectively. 

B. Fitting results of model coefficients. 
According to the determined [Ilow, Iup], the relationships between Icut 

and 1/K as well as B for two types of batteries are depicted in Fig. 9, 
where the solid lines represent the fitted f1/K(Icut) and fB(Icut). The fitted 
function coefficients are listed in Table 2, and the values of R-square (R2) 
are also listed in the table to measure the fitting accuracy. It can be 
concluded from Fig. 9 and Table 2 that the adopted fitting functions can 
accurately describe the variation trends of 1/K and B. 

5.3. Analysis of online estimation performance 

In order to validate the effectiveness and robustness of the proposed 
method, three cases, that is, constant Icut cut-off condition, constant TCV 
cut-off condition, and different Ts,ons, as illustrated in Fig. 10, are 
considered in this section. 

A. Case 1: constant Icut cut-off condition 
In order to evaluate the estimation performance, the scatter plots of 

Capest versus Cap with different Icuts are demonstrated in Fig. 11, where 
the reference line, that is, the solid line, represents the ideal estimation 
results, that is, Capest = Cap. The closer the points approach the reference 
line, the more accurate the estimation results. Specifically, Capests are 
calculated based on the reference regression functions, which are 
identified based on the test data of batteries #1 (LFP) and #5 (NCA) in 
this study. As can be seen, the points in Fig. 11 can overall track the 

Fig. 11. Estimation results of two batteries with different Icuts. LFP battery with (a) Icut = 0.32 A and (b) Icut = 0.83 A. NCA battery with (c) Icut = 0.29 A and (d) Icut =

0.41 A. 

Fig. 12. Evolution of RMSE with respect to Icut for (a) LFP and (b) NCA batteries.  
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reference line, indicating a satisfactory estimation accuracy for the 
employed two types of batteries. 

In addition, the root-mean-square error (RMSE) between the 
normalized Cap and Capest, calculated as (16), is utilized to quantita-
tively measure the estimation accuracy, where Capnom denotes the 
nominal battery capacity, 

RMSE=

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nd

∑Nd

i=1

(
Capi − Capest,i

)2

√
√
√
√

/

Capnom

⎤

⎦× 100% (16) 

The estimation RMSE with respect to different Icuts for the tested 
batteries are calculated and plotted in Fig. 12. It can be observed that the 
calculated RMSEs corresponding to the two tested batteries demonstrate 
the opposite variation trends with respect to Icut, which can be attributed 

to the distinct evolution of |r|, as shown in Fig. 8. For example, for the 
LFP battery, the RMSE overall reduces with an increasing Icut. This is 
mostly due to the fact that TCV at higher Icut demonstrates a stronger 
correlation with Cap, resulting in a better estimation performance. Even 
with the varied values, the overall RMSEs for the respective two batte-
ries are less than 1.35% and 2.05% within a certain range of Icut. 

B. Case 2: constant TCV cut-off condition 
The estimation results under different TCV cut-off conditions for the 

two tested batteries are exemplarily demonstrated in Fig. 13. As can be 
seen, for the LFP battery, the estimation results under a lower TCV cut-off 
condition are much closer to the reference line. While for the NCA 
battery, the increased cut-off TCV corresponds to a better estimation 
performance. 

The detailed evolution of estimation RMSEs with respect to TCV is 

Fig. 13. Estimation results of two batteries with different TCVs. LFP battery with (a) TCV = 200 s and (b) TCV = 1000 s. NCA battery with (c) TCV = 2500 s and (d) TCV 
= 3500 s. 

Fig. 14. Evolution of RMSE with respect to TCV for (a) LFP and (b) NCA batteries.  

J. Yang et al.                                                                                                                                                                                                                                    



Energy 263 (2023) 125743

11

demonstrated in Fig. 14 to further evaluate the estimation performance. 
It is clear from Fig. 14 that the RMSEs for the LFP and NCA batteries are 
generally less than 1.45% and 2.05%, respectively, indicating the 
feasibility of the proposed method under the constant TCV cut-off con-
dition. In addition, as can be seen, the estimation RMSEs for the LFP and 
NCA batteries demonstrate the increasing and decreasing variation 
trends versus TCV, respectively, which are consistent with the estimation 
results shown in Fig. 13. This is because a larger TCV at a certain aging 
state corresponding to a lower Icut, suggesting a weaker correlation for 
the LFP battery and a stronger correlation for the NCA battery, as 
illustrated in Fig. 8. Therefore, in this case, the estimation accuracy is 
closely related to the predefined TCV, and the estimation performance 
may significantly deteriorate when the corresponding Icut is outside the 
appropriate range. 

C. Case 3: different Ts,ons 
To verify the necessity of the Ts-adaptive MAF, the proposed SoH 

estimation method is implemented based on the test data when Ts,ons are 
set as 1, 5, and 10 s. The length of the filter window is set to 30 in this 
study. The estimation results with constant and adaptive buffer lengths 
are graphically represented in Fig. 15, where Icuts are set as 0.30 and 
0.35 A for the LFP and NCA batteries, respectively. As can be seen, the 
influence of Ts,on on the estimation results is negligible for the proposed 
method. By contrast, for the method with the constant buffer length, 
when Ts,on is larger than 1 s, the estimated capacities are generally lower 
than the actual values, as shown in Fig. 15(a) and (c). In addition, the 
difference between the reference and the actual values is enlarged with 
the increasing Ts,on, especially for the employed LFP battery. 

The evolution of the estimation RMSE versus Icut is illustrated in 
Fig. 16 to make a comprehensive investigation. 

For the LFP battery, only the results in the range of [0.15 A 0.45 A] 
are presented for a clear comparison. It can be seen from Fig. 16 that 
based on the Ts-adaptive MAF, the produced RMSE curves with different 

Ts,ons almost overlap. While for the estimation results with the constant 
buffer length, the estimation error corresponding to larger Ts,on signifi-
cantly rises as Icut increases. Especially for the LFP battery, the RMSE 
corresponding to Ts,on = 10 s is larger than 10% when Icut is set as 0.45 A. 
In order to illustrate the above phenomena, the measured current and 
the trajectory of the smoothed current based on different smoothing 
parameters are exemplarily presented in Fig. 17(a), where Ts,off and Ts,on 
are set as 1 and 5 s, respectively. Specifically, curves #1 and #2 
represent the smoothed current trajectories based on the adaptive and 
constant buffer length, that is, Nb,on,1 = 6 and Non,2 = 30. It can be 
observed from Fig. 17(a) that curve #1 can track the measured trajec-
tory. By comparison, curve #2 overall lags curve #1, which is consistent 
with the analysis in Section 3. This means that for a specific Icut, TCV 
extracted from curve #2 is larger than that extracted from curve #1, 
leading to the battery capacity estimation lower than the actual value, as 
illustrated in Fig. 17(b). It should be noted that the difference between 
TCV,1 and TCV,2 is enlarged in the high Icut region. This causes the rising 
RMSE with the increasing Icut under the constant buffer length scenario, 
as shown in Fig. 16(a) and (c). 

5.4. Comparison with conventional TCV-based method 

In this section, the conventional TCV-based method is conducted for a 
comparative study. Since the current is recorded by the high-precision 
sensor in the laboratory environment, the additional random noise 
with a standard deviation of 10 mA is added on the measured current to 
simulate the measurement noise. The capacity estimation results by the 
conventional and the proposed TCV-based methods are plotted in Fig. 18, 
and the corresponding RMSEs are listed in Table 3 to make a quantita-
tive comparison. 

It can be observed from Fig. 18 that, compared with the proposed 
method, the conventional method generally produces the results higher 

Fig. 15. Estimation results of two batteries with different Ts,ons. LFP batteries with (a) constant and (b) adaptive buffer lengths. NCA batteries with (c) constant and 
(b) adaptive buffer lengths. 
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than the actual values, leading to larger estimation errors, as shown in 
Table 3. This is because is affected by the noise disturbance, and the 
actual CV charging current cannot reach the predefined cutoff value, 
which resulting in a lower TCV and a higher capacity estimation, in 
comparison to the actual value. By contrast, the proposed method can 
update the coefficients of the reference regression function according to 
the actual Icut. Hence, the produced estimation results are close to the 
actual values. 

5.5. Comparison with different FoIs and offline modeling methods 

To further evaluate the performance of the proposed method, three 
other FoIs proposed in the recent literature and the feedforward neural 
network (FNN) [45,46] as one of the popular offline modeling methods 

are employed to make a comprehensive comparison. The employed FoIs 
include the time constant of the decoupled CV charging current (τCV) 
[36], the energy of the CV charging process (ECV) [38], and the peak area 
(PA) under the IC curve, i.e., the interval capacity [18,47], during the CC 
charging process. Specifically, τCVs are obtained using the 
dynamic-decoupled parameter identification method based on CV 
charging data, as reported in our previous work [36]. ECV during each 
cycle is calculated as [38]. 

ECV =

∫ TCV

0
VtI(t)dt (17)  

where Vt is the battery terminal voltage. For PA, it can be directly ob-
tained from the voltage charging curve under the CC charging scenario, 
i.e. [18], 

Fig. 16. Evolution of RMSE with respect to Icut. LFP batteries with (a) constant and (b) adaptive buffer lengths. NCA batteries with (c) constant and (d) adaptive 
buffer lengths. 

Fig. 17. The illustration of the influence of Ts,on on (a) filtered results and (b) capacity estimation results (exemplarily with LFP battery at 96.28% SoH).  
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PA=

∫ Vup

Vlow

dCap
dVt

dVt =Cap
(
Vup

)
− Cap(Vlow)= ICC

[
t
(
Vup

)
− t(Vlow)

]
(18)  

where ICC denotes the current under the CC charging scenario, Vlow and 
Vup denote the lower and upper bounds, respectively. The evolutions of 
the IC curves of the tested LFP and NCA batteries are plotted in Fig. 19. 
As can be seen, the area under the third peak for the LFP battery, i.e., 
Peak3,LFP, and the area under the second peak for the NCA battery, i.e., 
Peak2,NCA, gradually reduce with the increasing cycle number. Hence, 
the voltage intervals for the LFP and NCA batteries are selected as [3.38 
V, 3.42 V], and [3.67 V, 3.77 V], respectively. 

The comparative results of the SoH estimation performance for the 
LFP and NCA batteries are listed in Tables 4 and 5, respectively, where 
the required data represent the dataset used for the FoI identification, 
tmodel and tFoI represent the computational cost of the offline model 
construction and the FoI extraction processes, respectively, and both of 
them are obtained by averaging from 10 runs. The algorithms in this 
study are implemented on a Lenovo ThinkCentre computer with Intel 
Core i5-7400 (3-GHz) CPU and 16-GB RAM. 

It can be seen from Tables 4 and 5 that all methods can yield the 
satisfactory estimation results, especially the PA-based method for the 

LFP battery and the τCV-based method for the NCA battery. With respect 
to the computational cost, due to the two-layer offline modeling process, 
tmodel of the proposed TCV-based method is generally longer compared 
with the τCV-based method. However, the fitting method consumes less 
time than the FNN method to establish the offline model. In addition, it 
can be observed from Tables 4 and 5 that tFoI of TCV is approximately 

Fig. 18. Comparison of capacity estimation by two methods for (a) LFP and (b) NCA batteries.  

Table 3 
Comparison of RMSEs based on the proposed and the conventional TCV-based 
methods.   

LFP NCA 

Proposed Conventional Proposed Conventional 

RMSE [%] 1.30 2.74 1.56 2.90  

Fig. 19. Evolutions of smoothed IC curves for (a) LFP and (b) NCA batteries.  

Table 4 
Comparative results of different SoH estimation methods for tested LFP 
batteries.  

FoI LFP 

TCV τCV ECV PA 

Modeling method Fitting FNN FNN FNN FNN 
RMSE [%] 1.32 1.33 1.05 1.42 0.64 
tmodel [s] 0.17 0.68 0.12 0.23 0.25 
tFoI [s] ≈0 ≈0 0.08 ≈0 0.02 
Size of required data Length of Nb 100% 100% 15.43%  

Table 5 
Comparative results of different SoH estimation methods for tested NCA 
batteries.  

FoI NCA 

TCV τCV ECV PA 

Modeling method Fitting FNN FNN FNN FNN 
RMSE [%] 1.53 1.49 1.47 1.68 1.48 
tmodel [s] 0.26 0.59 0.15 0.32 0.12 
tFoI [s] ≈0 ≈0 0.17 ≈0 0.01 
Size of required data Length of Nb 100% 100% 25.14%  
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zero, since it is obtained as soon as the CV charging process is finished. 
By comparison, the τCV-based method consumes the most time, which is 
supposed to be caused by the relatively complex parameter identifica-
tion process. It is worth noting that although ECV can be immediately 
acquired when the charge is finished, the integral computation is 
continuously conducted throughout the CV charging process, as 
expressed in (17), which means that the entire CV charging data are 
required. For the PA-based methods, the charging data within the pre-
determined voltage interval are required, which are 15.43% and 25.14% 
of the complete CC charging data for the LFP and NCA batteries, 
respectively. By contrast, the proposed method only requires the data 
with the length of Nb at the end of the CV charging process, indicating 
the lowest storage consumption. In summary, the proposed method 
shows an overall satisfactory performance comprehensively considering 
the estimation accuracy, computational cost, and storage consumption. 

6. Conclusion 

In this paper, we develop an online battery SoH estimation method 
adaptive to the flexible CV charging profile. The coefficients of the 
conventional TCV-based SoH model are further expressed as the func-
tions of the actual Icut, and a Ts-adaptive MAF is proposed to acquire the 
accurate Icut in real time. Verification results demonstrate that within the 
appropriate Icut range, the proposed method guarantees satisfactory 
capacity estimations with the RMSE within 1.45% and 2.05% for the 
respective LFP and NCA batteries under different CV charging profiles. 
Benefited from the adaptive buffer length, the estimation accuracy is 
almost maintained in the case of different Ts,ons. In addition, compared 
with the conventional TCV-based method, the RMSEs of the proposed 
method are reduced to within 2% for both types of the tested batteries at 
a certain Icut, considering the noise disturbance, and the comparison 
among different FoIs and modeling methods further validate the overall 
superiority of the proposed method in terms of the estimation accuracy, 
computational cost, as well as storage consumption. 

In this paper, the ambient temperature, the charging current in the 
previous CC process, i.e., the initial value of the CV charging current, 
and the CV charging voltage are considered as constant throughout the 
aging process. However, these variables are generally flexible and un-
certain in practical applications, such as the fast-charging scenario in 
real-world EVs, and this will compromise the performance of the 
established SoH model. Hence, in our future work, the impacts of the 
aforementioned stress factors will be considered to further improve the 
robustness of the proposed method. 
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