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H I G H L I G H T S  

• A multi-fault diagnostic strategy for the series-connected lithium-ion battery pack is proposed. 
• The contribution-based PCA is adopted to detect the fault of the battery. 
• The reconstruction-based parallel PCA-KPCA is used to estimate the fault waveform. 
• Inconsistency, connection fault, and external short circuit are comprehensively diagnosed. 
• Algorithm matrix and experiment demonstrate the validity and accuracy.  
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A B S T R A C T   

Various faults of the lithium-ion battery threaten the safety and performance of the battery system. The early 
faults are difficult to detect and isolate owing to unobvious abnormality and the nonlinear time-varying char-
acteristics of the battery. Herein, a multi-fault diagnosis strategy is proposed that focuses on detecting and 
isolating different types of faults, and estimating fault waveforms of the battery, including inconsistency eval-
uation, virtual connection fault, and external short circuit. First, the principal component analysis (PCA) model 
of the battery is established and the contribution is employed to detect the abnormity in the battery pack. Once 
the fault is detected, the parallel kernel principal component analysis (KPCA) technology is adopted to recon-
struct the fault waveform of the battery parameters, including ohmic resistance, terminal voltage, and open- 
circuit voltage. These parameters are jointly taken as fault indexes improving the reliability of fault diagnosis. 
Finally, the proposed method is verified using amounts of tested data of eight cells in series. The results indicate 
that the contribution-based PCA method can accurately detect the fault. Furthermore, the reconstruction-based 
parallel PCA-KPCA can accurately estimate the fault waveform of the faulty battery, which helps investigate the 
fault degree and causes.   

1. Introduction 

Electric vehicles (EVs) have become more popular recently due to 
their capability for sustainable mobility in the future which help combat 
global climate change, energy crisis, and pollution concerns. Lithium- 
ion batteries are widely used in EVs owing to the advantages of high 
energy and power density, long lifespan, low self-discharging, and 
environmental benefits [1–3]. However, the safety issue of the battery 

system has restricted the rapid penetration of EVs. Affected by the poor 
tolerance to abuse, operating conditions, and external environment of 
the batteries, various faults may occur in the lithium-ion battery system. 
All kinds of faults may accelerate battery degradation and lead to acci-
dents such as thermal runaway, fire, and explosion [4,5]. Therefore, it is 
essential to detect and diagnose battery faults for improving the safety 
and reliability of the battery system [6–8]. 

In general, the battery faults mainly include overcharge/over- 
discharge, connection fault, external/internal short circuit, sensor 

* Corresponding author. 
E-mail address: cmi@sdsu.edu (C. Mi).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2022.119678 
Received 6 January 2022; Received in revised form 4 July 2022; Accepted 10 July 2022   

mailto:cmi@sdsu.edu
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2022.119678
https://doi.org/10.1016/j.apenergy.2022.119678
https://doi.org/10.1016/j.apenergy.2022.119678
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2022.119678&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Applied Energy 324 (2022) 119678

2

fault, inconsistency within the battery pack, and so on. Extensive 
research for a specific type of fault in the battery system has been carried 
out. Sidhu et al. [9] proposed a method to detect the occurrence of 
overcharge and over-discharge by employing a multi-model estimator. 
Extended Kalman filters (EKF) were applied on normal and fault models 
to estimate the terminal voltages and generate residuals. Then the pro-
posed algorithm was adopted to evaluate the residual signals. Wu et al. 
[10] developed a novel fault diagnosis technology based on fuzzy logic 
to diagnose the overcharge/over-discharge fault. A series of typical 
abusive tests were conducted to extract fault features. The research 
connected the fault symptoms with internal fault mechanisms. Yao et al. 
[11] developed a diagnostic method of connection fault of lithium-ion 
batteries based on Shannon entropy for EVs. The connection fault was 
studied by the tests of loose connection bolts of a series-connected 
battery pack in a vibration environment. The results showed that the 
ensemble Shannon entropy can accurately predict the time and location 
of a connection fault. Ma et al. [12] proposed a detection method of 
virtual connection fault in a series-connected battery pack through an 
improved Z-score. The cross-voltage test was applied to isolate the 
connection fault and internal resistance increases of the cell. Besides, the 
temperature rise rate of the battery was taken as the secondary indicator 
to improve the robustness of fault detection. For the fault diagnosis of an 
internal short circuit (ISC), most researchers verify the proposed diag-
nostic method by paralleling a resistance with the battery, which is still 
an external short circuit (ESC) in essence. Gao et al. [13] presented a 
micro-short-circuit diagnostic method for the lithium-ion battery pack in 
series based on the mean-difference model and EKF. The capacity dif-
ference between cells was estimated. The short circuit current and 
resistance were accurately calculated by employing recursive least 
squares (RLS). Xia et al. [14] achieved an accurate diagnosis of ESC fault 
by setting the temperature rise rate, current, and voltage thresholds 
respectively. It is worth noting that the diagnostic result through the 
temperature rise rate threshold had a relative delay compared with the 
changes of current and voltage. Naha et al. [15] developed an effective 

and robust method for on-board detection of battery short-circuit, in 
which the current and terminal voltage measured by the battery man-
agement system (BMS) were used. A set of features from the recorded 
data were stored as normal behavior for the initial five charge-discharge 
cycles. The proposed algorithm can detect the fault 100% with a short- 
circuit resistance value below 200 Ω. Xiong et al. [16] investigated the 
characteristics of ESC fault in battery packs through experimental 
investigation. A two-step equivalent circuit model (ECM) describing the 
ESC process was established to achieve accurate and fast diagnosis of 
ESC fault. Liu et al. [17] proposed a diagnostic algorithm for current and 
voltage sensors fault based on adaptive extended Kalman filter (AEKF). 
The batteries with maximum and minimum terminal voltage in the 
series-connected battery pack were modeled to estimate the battery 
states, respectively. The sensor faults were detected and isolated accu-
rately by evaluating the residuals of the estimated and measured 
voltage. Qiu et al. [18] put forward a procedure to perform fault diag-
nosis and inconsistency evaluation based on multi-level Shannon en-
tropy for battery energy storage system. 

Owing to the complexity of the battery system and the uncertainty of 
driving conditions, different types of faults may occur. The diagnosis of a 
single type fault in a lithium-ion battery pack is highly targeted and not 
universal. Therefore, it is in urgent demand for a method that can di-
agnose different types of faults, which is the multi-fault diagnosis 
method. With the development of research on a single type of fault in the 
battery pack, some scholars have researched the multi-fault diagnosis of 
the battery pack, mainly using model-based and data-driven methods. 

Liu et al. [19] proposed a multi-fault diagnosis method, including a 
current sensor, multiple voltage sensors, temperature sensors, and 
cooling system fault, based on structural analysis. First, a structural 
model of the battery was built. Then, the multi-residual was generated 
through the selected structural model of the system. The four types of 
faults were detected and isolated by setting the fault threshold. Amifia 
et al. [20] achieved the detection and isolation of the overcurrent/ 
overvoltage fault by presetting the working limit of the current and 

Nomenclature 

Acronyms & abbreviations 
PCA principal component analysis 
KPCA kernel principal component analysis 
PC principal component 
EVs electric vehicles 
EKF extended Kalman filters 
AEKF adaptive extended Kalman filter 
ISC internal short circuit 
ESC external short circuit 
RLS recursive least squares 
BMS battery management system 
ECM equivalent circuit model 
SOC state of charge 
SOH state of health 
OCV open-circuit voltage 
CPV cumulative percent variance 
PCS principal component subspace 
RS residual subspace 
SPE squared prediction error 
DST dynamic stress test 
DC direct current 
CR connection resistance 
RBF Radial Basis Function 

Notation 
Ut terminal voltage 

R0 ohmic resistance 
X matrix of the Ut, OCV, and R0 respectively 
R correlation coefficient matrix of the original data X 
λ eigen value 
k the number of principal components 
P loading matrix of X 
T scores matrix of X 
E residual matrix 
ti scores vector in PCS 
ei residual vector in RS 
SPEi residual error between the i-th sample value and the 

predicted value 
Xtest,i the i-th sample of real-time monitoring data 
ContSPE

j contribution value of the j-th cell to the statistic SPE 
x actual monitored data 
x* normal part of the monitored data 
Ξ fault space 
f fault amplitude 
κ kernel matrix 
κ̂ centered kernel matrix 
σ coefficient of the Gaussian kernel function 
E’ the product of 1/m and an identity matrix I. 
m the number of samples 
n the number of cells 
i i-th sample 
j j-th cell  
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voltage. Kang et al. [21] put forward a multi-fault diagnosis method 
based on an interleaved voltage measurement topology. The topology 
was explained by constructing a matrix to realize the detection and 
isolation of the voltage sensor fault, connection fault, ESC, and ISC. The 
modified correlation coefficient method was used to eliminate the in-
fluence of the battery inconsistency and measurement error. This theory 
needs to add the number of voltage sensors in the battery system. Shang 
et al. [22] presented an improved sample entropy to realize early 
diagnosis of the short-circuit fault and open circuit, which solved the 
difficulty of traditional sample entropy to detect unobvious battery ab-
normality in the early stages. Park et al. [23] developed a comprehen-
sive diagnosis method for over-discharge and inconsistency among cells 
based on the maximum available current. Owning to the typical 
nonlinear time-varying of the battery system, the parameters were 
identified in real-time and a multi-variate autoregressive model was 
used to predict the maximum current. 

The above studies on multi-fault diagnosis methods are mostly based 
on model and hardware redundancy. Additionally, the data-driven 
method is also an effective multi-fault diagnosis method. Gu et al. 
[24] developed a multi-fault diagnosis system based on the Radial Basis 
Function (RBF) neural network, which employed the battery current, 
voltage, temperature, internal resistance, insulation resistance, and state 
of charge (SOC) as inputs and the fault types as output. The system can 
accurately diagnose each type of fault and the dangerous degree by 
training. Khaleghi et al. [25] proposed a real-time battery health diag-
nosis algorithm based on data-driven using driving cycle profiles. The 
original voltage was analyzed in time-domain and frequency-domain 
respectively. The condition indicators extracted in time-domain and 
frequency-domain were employed to track the state of health (SOH) of 
the battery online. The proposed method was revealed to have high 
precision and had the capability of tracking the SOH of the battery with 
a relative error of less than 1%. Zhang et al. [26] put forward a novel 
data-driven method for fault diagnosis and thermal runaway warning of 
the lithium-ion battery pack based on state representation methodology. 
The proposed method took the normalized voltage as an indicator to 
extract the real-time state of each cell in the battery pack. The normal-
ized voltage amplified the features of the battery compared with the 
original voltage so that early faults of the battery can be detected. 

In summary, it is still a challenging issue to effectively detect and 
isolate different types of faults. According to the literature review, there 
are two knowledge gaps. On one hand, owing to the complexity of the 
battery system and the uncertainty of driving conditions, different types 
of faults may occur. The diagnostic methods for one specific type of fault 
in a lithium-ion battery pack are highly targeted and not universal. It 
can’t comprehensively diagnose different types of faults. On the other 
hand, the multi-fault diagnosis methods remain lacking, which mainly 
include model-based and data-driven methods. Model-based methods 
adopt parameter and state estimation techniques to track changes in the 
battery. The data-driven method directly extracts useful features from 
the monitored data onboard to detect faults, regardless of the internal 
state of the battery. Previous research trends isolate faults by hardware 
redundancy in existing multi-fault diagnosis methods. Besides, there’s 
currently rarely research attempting to estimate the fault waveform of 
the battery and considered the inconsistency among cells. 

Therefore, to fill these gaps, we propose a multi-fault diagnosis 
method with reconstruction-based contribution based on principal 
component analysis (PCA) and kernel principal component analysis 
(KPCA). To the best of our knowledge, this is the first time that a parallel 
PCA–KPCA fault detection model is established to diagnose multi-fault 
of the lithium-ion battery pack. Wang et al. [27] established an esti-
mation model for battery SOC using the KPCA method. The model can 
extract non-linear factors in parameters. Banguero et al. [28] presented 
the employ of PCA for the SOH diagnosis of a battery energy storage 
system. The PCA model is applied to a parameter set associated with the 
capacity, internal resistance, and open-circuit voltage of a battery en-
ergy storage system. 

In this work, the proposed method can accurately detect and isolate 
different types of faults and estimate the fault waveform. Firstly, the 
recorded terminal voltage in real-time, open-circuit voltage (OCV), and 
ohmic resistance estimated by the RLS are combined as the fault index 
parameters. The PCA model of the battery pack is established. The 
battery pack is evaluated by calculating the contributions of each cell to 
the PCA statistics. Secondly, the KPCA model of the battery pack is 
developed to address the nonlinear issue of the battery. The 
reconstruction-based parallel PCA-KPCA is introduced to estimate the 
fault waveform of the faulty battery. The estimated fault waveform can 
provide a scientific basis for the quantitative analysis of the fault causes. 
Thirdly, the proposed method is verified and analyzed through designed 
experiments with various types of faults, including the evaluation of 
inconsistency among cells, virtual connection fault, and ESC. The main 
contributions of this work are attributed to the following three aspects:  

(1) A comprehensive diagnostic strategy for different types of faults 
in the battery pack is designed, including the inconsistency 
evaluation among cells, virtual connection fault, and ESC.  

(2) The reconstruction-based parallel PCA-KPCA technology can not 
only locate the faulty battery but also accurately estimate the 
fault waveform of the battery parameters. The estimated wave-
form provides a scientific basis for quantitative analysis of fault 
causes. 

(3) Some types of faults will not cause abnormalities in all parame-
ters of the battery. The terminal voltage, OCV, and ohmic resis-
tance are jointly used fault indexes, which improves the 
reliability of diagnosis in the battery pack. This is non-hardware 
redundancy. 

The remainder of this paper is organized as follows: the diagnostic 
algorithm is introduced in Section 2. The experimental setup of a battery 
pack with the inconsistency, virtual connection, and ESC is described in 
Section 3. The diagnostic results are discussed in Section 4, followed by 
the key conclusions summarized in Section 5. 

2. Methodology 

2.1. PCA battery modeling 

Principal component analysis (PCA) is a multi-variable statistical 
technique applied to reduce the dimensionality for a big dataset that 
tried to lose as little information as possible [29]. PCA applies the his-
torical data of the system under normal operating conditions to establish 
a statistical model of the variables, which can evaluate the difference 
among variables and is widely used in the field of fault diagnosis. When 
a PCA is used, a new variable called principal component (PC) is 
generated. The first PC contains most of the information of the original 
data. The second PC indicates a maximum residual variance, and so on. 
PCA results can be expressed by the scores and loadings matrix. The 
scores matrix indicates the differences and similarities among variables. 
The loadings matrix determines the correlation among variables, which 
helps determine the contributions of each variable [30]. A PCA model of 
the lithium-ion battery pack in series is established as follows. 

A battery pack consists of n cells in series and each cell contains m 
samples. The original data is organized into a matrix as shown in Eq. (1). 
X is the matrix of the Ut, OCV, and R0 respectively in the battery pack. 

X =

⎡

⎢
⎢
⎣

x11 x12⋯ x1n
x21 x22⋯x2n

⋮ ⋮ ⋮
xm1 xm2⋯xmn

⎤

⎥
⎥
⎦ = (X1,X2,⋯,Xn) (1)  

where 
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Xj =

⎛

⎜
⎜
⎝

X1j
X2j
⋮

Xmj

⎞

⎟
⎟
⎠, (j = 1, 2,⋯n) (2) 

First, the original data matrix is normalized by Eq. (3). The data 
matrix after normalizing is still denoted by X. 

Xij =
xij − xj

sj

where, xj =

∑m

i=1
xij

m
, sj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1

(
xij − xj

)2

m − 1

√
√
√
√
√

(i = 1, 2,⋯,m, j = 1, 2,⋯, n)

(3) 

Then, the correlation coefficient matrix of the original data is 
calculated, which is the covariance matrix of the normalized data, as 
shown in Eq. (4): 

R =
1

m − 1
XTX (4) 

Furthermore, the eigenvalues and eigenvectors of the covariance 
matrix are obtained by calculating as in Eq. (5) to determine the prin-
cipal component. 

|R − λIn| = 0 (5)  

where In is an n-dimensional identity matrix. Vector λ = (λ1, λ2, …, λn) 
indicates the eigenvalue following λ1 ≥ λ2 ≥ … ≥ λn. Matrix Pn = (p1, p2, 
…, pn) is the corresponding eigenvector matrix. The eigenvectors p1, p2, 
…, pn are the loadings vectors of matrix X. 

Therefore, the matrix X ∈ Rm×n can be decomposed into the sum of 
the outer products of n vectors, as shown in Eq. (6). 

X = t1pT
1 + t2pT

2 + ⋯ + tkpT
k + ⋯ + tnpT

n = TPT
k + E (6)  

where T is the scores matrix of the X (tk = Xpk), which is essentially the 
projection of matrix X along the direction of the loading vector. The 
column vector tk of the T indicates the k-th principal component. k is the 
number of principal components, which is usually determined according 
to Cumulative Percent Variance (CPV) [29,31], as shown in Eq. (7). The 
space where TPT

k is located is named Principal Component Subspace 
(PCS). The number of PCs k is chosen so that CPV reaches a pre-
determined value, e.g. 85%. The matrix E = tk+1pT

k+1 + tk+2pT
k+2 + ⋯ 

+tnpT
n = X − TPT

k is obtained by predicting X from TPT
k . So, E represents 

the residual matrix, which contains the information that is not explained 
by the principal components. The space where E is located is called 
Residual Subspace (RS). 

CPV =
λ1 + λ2 + ⋯λk

λ1 + λ2 + ⋯λn
× 100% (7) 

The above is the process of PCA modeling of the lithium-ion battery 
pack. The complexity of the original data is reduced by determining the 
appropriate number of PCs, while the main information of the original 
variables is retained as much as possible to reduce the dimensionality. 

2.2. Fault detection of the contribution-based PCA 

The PCA-based fault diagnosis technology is a process of machine 
learning. The PCA model of the battery pack is established with the 
normal data. The real-time monitoring data is detected and evaluated 
using the model. The PCA model projects the observation Xi = (xi1, xi2, 
…, xin) of the matrix X into the PCS to obtain the scores vector ti = (ti1, 
ti2, …, tik) and into the RS to obtain the residual vector ei = (ei(k+1), 
ei(k+2), …, ein). k indicates the number of PCs. The scores vector and 
residual vector are summarized into independent statistics: Squared 
Prediction Error (SPE) and Hotelling T2 [29,32]. These two statistics 

respectively represent the extent of the monitored data deviation from 
the predicted value of the PC model in RS and PCS, which are employed 
to detect whether an abnormality occurs. In this study, multi-fault 
detection of the battery pack in series based on the statistic SPE is 
investigated. The statistic SPE is calculated by Eq. (8). 

SPEi = eieT
i = Xtest,i

(
I − PkPT

k

)
XT

test,i (8)  

where I is the identity matrix. Xtest,i represents the i-th sample of real- 
time monitoring data. SPEi indicates the residual error between the i- 
th sample value and the predicted value of PC model. In general, it is 
detected whether a fault occurs in the system by comparing SPEi with 
the SPE control limit [28,33]. However, this method is easily affected by 
noises and operating conditions. False alarms may occur. Therefore, this 
paper calculates the contribution of each cell to the SPE, as shown in Eq. 
(9), to detect faults. 

ContSPE
j = sign

(
etest,j

)
*e2

test,j, j = 1, 2,⋯n (9)  

where etest = Xtest(I − PkPT
k ) = Xtest − TtestPT

k . ContSPE
j is the contribution 

value of the j-th cell to the statistic SPE. If the contribution value is 
positive, the larger the value, the more it exceeds the normal level. On 
the contrary, the smaller the value is, the more it is lower than the 
normal level Therefore, the deviation degree of the battery from the 
normal level can be utilized to detect battery fault conditions by 
analyzing the contribution value of each cell to the SPE. 

2.3. Fault diagnosis of the reconstruction-based PCA 

After an abnormality is detected in the battery pack, the fault 
waveform is estimated based on the PCA reconstruction to help quantify 
the fault causes. In this paper, we assume that only one fault occurs in 
the battery pack at the same time. When a fault occurs, the fault sample 
vector can be expressed as the following formula: 

x = x* + Ξf (10)  

where x is the actual monitored data. x* is the normal part of the 
monitored data. f is the fault amplitude. Ξ indicates the fault space, Ξ ∈
In×n. The column vector Ξj(1 ≤ j ≤ n) of Ξ indicates the fault direction, 
for example, Ξ1 = [0, 0, …, 0]T means fault-free and Ξ2 = [0, 1, …, 0]T 

means fault occurs in cell 2. 
The fault reconstruction of data is essential to estimate the normal 

data corresponding to the fault data to obtain the fault waveform. If cell j 
fails, the analytical formula for reconstruction is as follows [34]: 

x*
j =

[
cT
− j 0 cT

+j

]
x

1 − cjj
(11)  

where [cT
− j 0 cT

+j] is the vector after the j-th column of matrix C (C =

Pk PT
k ) is replaced by 0. cjj is the j-th row and j-th column of matrix C. 

Therefore, the normal value of the data matrix is estimated and the fault 
waveform f is calculated to help quantitatively analyze the fault causes. 

2.4. KPCA battery modeling 

PCA is generally employed to deal with a linear process. For the 
ternary lithium-ion battery, its ohmic resistance can be approximated as 
a linear characteristic. However, the terminal voltage and OCV show 
typical nonlinear. The KPCA has more merits to analyze the nonlinear 
scenarios. Therefore, after the battery fault is detected through the 
contribution-based PCA fault detection method, kernel principal 
component analysis (KPCA) is adopted to reconstruct the terminal 
voltage and OCV to obtain the fault waveform of the parameters [35]. 

The key idea of KPCA is to map the data into a higher-dimensional 
space using a kernel function. A linear relationship is investigated and 
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PCA is performed in the feature space [36,37]. In general, representative 
kernel functions include Linear kernel, Polynomial kernel, and Gaussian 
kernel [38]. In this study, the Gaussian kernel is applied to carry out 
KPCA and reconstruction on the terminal voltage and OCV data matrix, 
as shown in Eq. (12). 

κ(x, y) = exp

(
− ‖x − y‖2

2σ2

)

, σ ∈ R (12)  

where σ is the coefficient of the Gaussian kernel function, also called 
hyperparameters. Its effect on the Gaussian kernel function is consistent 
with that of the coefficient in the Gaussian function. 

The procedure is as follows:  

(1) Normalize the data matrix under normal operating conditions.  
(2) Calculate the kernel matrix. The parameters of the Gaussian 

kernel function are firstly determined and the kernel matrix κ is 
calculated by Eq. (12).  

(3) Center the kernel matrix. κ̂ = κ - E’κ − κE’ + E’κE’, where E’ 

is equal to the product of 1/m and an identity matrix I ∈ Rm×m.  
(4) The eigenvalues λ = (λ1, λ2, …, λm) (λ1 ≥ λ2 ≥ … ≥ λm) of κ̂ are 

calculated through eigenvalue decomposition. The correspond-
ing eigenvectors are Pm = (p1, p2, …, pm).  

(5) Calculate the CPV of the eigenvalues according to Eq. (7). The 
number k of nonlinear PC is determined. 

(6) Extract the first k eigenvalues λ1 ≥ λ2 ≥ … ≥ λk and the corre-
sponding eigenvectors p1, p2, …, pk. The eigenvectors are 
normalized.  

(7) Project the kernel matrix κ̂ to the direction of the eigenvectors to 
obtain the kernel principal component model of the original data 
matrix. 

2.5. Fault diagnosis of the reconstruction-based KPCA 

After the KPCA model is established using the data matrix of terminal 
voltage and OCV under normal operating conditions, the real-time 
monitoring data is reconstructed based on the KPCA model to help 
quantitatively analyze the fault causes. 

Similarly, when a fault occurs in the battery pack, the corresponding 
normal part of the fault data can be expressed as the following formula: 

x* = x − Ξf (13)  

where x* is the normal part of the fault data. x is the actual monitored 
data. f indicates the fault amplitude. Ξ (Ξ ∈ In×n) is the fault space and 
the column vector Ξj(1 ≤ j ≤ n) of Ξ indicates the direction of the fault. 

For the statistic SPE, the estimation formula of the fault waveform is 
derived as follows [39]: 

fi =
ΞjBT[Im + FDk

(
x*

i

)]

kT(x*
i )[Im + FDk(x*

i )]
(14)  

where B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ(x*
i , x1)(x − x1)

T

κ(x*
i , x2)(x − x2)

T

⋮
κ(x*

i , xm)(x − xm)
T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F = Im − 1
mIm, D = PkΛ− 1PT

k , Λ =

Fig. 1. The schematic process of parallel PCA-KPCA modeling.  
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diag(λ1, λ2, …, λk), k
(
x*

i
)

is uncentered value of κ(x*
i , xi). k(x*

i ) is the 
central value of κ(x*

i ,xi). 
Therefore, the estimated value f of the fault waveform of the 

nonlinear parameters matrix is obtained through the above process to 
help quantitatively analyze the fault causes in combination with the 
multi-parameter index. The whole process of parallel PCA-KPCA 
modeling is shown in Fig. 1. 

2.6. Multi-fault diagnosis procedure based on parallel PCA-KPCA 

This section shows a multi-fault diagnosis procedure for a series- 
connected battery pack based on parallel PCA-KPCA, as shown in 
Fig. 2. The multi-fault here refers to different types of faults, including 
inconsistency assessment among cells, virtual connection fault, and ESC. 
Firstly, the real-time measured current and terminal voltage of batteries 
are identified by the RLS online [40]. The ohmic resistance and OCV are 
obtained. The PCA models of battery parameters are established in the 
combination of Ut, R0, and OCV as fault indicators. In this work, the 
characteristics of the “median cell”, which is explained in previous work 
[41], are adopted as a normal reference to build PCA model. The char-
acteristics of each cell monitored online are for testing. Then, the con-
tributions of each cell parameter to the statistic SPE are calculated, 
which are compared with the preset threshold. If the contributions do 
not exceed the preset threshold, the battery pack shows fault-free that 
can be further evaluated for inconsistency. If the contributions exceed 
the preset threshold, it is preliminarily detected that a fault has occurred 
in the battery pack. After a fault is detected, the characteristic param-
eters, Ut, R0, and OCV, of the fault cell are reconstructed based on par-
allel PCA-KPCA. The fault waveforms of the parameters are estimated. In 
real world applications, the estimated fault waveform helps further 
quantitively analyze the fault causes of the cell. The battery manage-
ment system (BMS) control and make decisions based on the diagnostic 
results to improve the safety of the battery system. 

3. Experiment setup 

As one of the most critical components in EVs, the battery pack 
consists of tens to hundreds of cells connected in series and parallel. At 
each stage of battery manufacturing, screening into groups and use, 
there will be a certain degree of inconsistency in internal/external pa-
rameters such as available capacity, internal resistance, OCV, etc, 

among the cells in the battery system, which affect the efficiency, safety, 
and service life of the system. In the operation process of EVs, some 
factors, such as road condition, environment, and vibration, always 
affect batteries. Loosening of bolts and welding points in connected cells 
will inevitably occur, which results in an abnormal increase in connec-
tion resistance. Besides, accidental leakage of water into the battery 
pack, the collision deformation of battery packaging, loose connection 
plate or wire, etc, may easily trigger the external short circuit. In this 
study, small-scale fault experiments that consider the inconsistency 
among cells, virtual connection fault, and external short circuits of the 
series-connected lithium-ion battery pack are carried out under labo-
ratory conditions to verify the proposed method. 

We adopted the LG18650 ternary lithium-ion battery with a rated 
capacity of 2.5 Ah. The specific parameters are shown in Table 1. The 
schematic diagram of the experimental setup is shown in Fig. 3. The 
battery pack structure with eight cells connected in series is presented in 
Fig. 3(a). The selected batteries are old and have undergone a different 
using process. The actual capacity of the batteries is given in Table 2. We 
performed a pre-cycle test on the batteries and fully charged them. The 
battery pack with eight cells in series is conducted DST [42] cycle at 
room temperature. The recorded terminal voltage considers the 
connection resistance of cell-to-cell. In the schematic diagram, the re-
sistors, R1,2, R2,3, …, R6,7, R7,8, are used to represent the connection 
resistance between cells. For example, R1,2 is the connection resistance 
between cell 1 and cell 2 and R5,6 is that of cell 5 to cell 6. During the 
test, we manually loosen the connection wire between cell 3 and cell 4 to 
simulate a virtual connection fault, while other connections are nor-
mally fastened. It is worth noting that the connection resistance caused 
by the loose fault is unknown, which better reflects the situation in real 

Fig. 2. Multi-fault diagnosis procedure for series-connected battery pack with reconstruction-based contribution based on parallel PCA-KPCA.  

Table 1 
Specifications of the tested batteries.  

Items Specifications 

Nominal capacity 2.5 Ah 
Charge ending voltage 4.2 V 
Discharge ending voltage 

Nominal voltage 
2.75 V 
3.7 V 

Standard charging current 
Max charging current 
Standard discharging current 
Max discharge current 

1.25 A 
4.0 A 
0.5 A 
20 A  
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vehicles. A fixed value resistor with 0.5 Ω is connected in parallel with 
cell 7. The switch is closed during discharging to simulate an ESC fault in 
the battery pack. Besides, since the batteries are randomly selected and 
are all old, there are certain differences among cells, which simulate the 
inconsistency in the battery pack. The hardware platform for the 
experiment is provided in Fig. 3(b). A customized BMS is applied to 
monitor the current and terminal voltage of the battery pack. All the 
data are collected with dSPACE MicroLabBox and saved by ControlDesk 
in the host PC. The dis/charge procedures are conducted by the direct 

current (DC) electronic load and the DC power supply in parallel with 
the battery pack. 

4. Results and discussion 

4.1. Experimental results 

It is found that the DC electronic load consumes some energy during 
charging by DC power supply by trial and error. Hence, the charging 

Fig. 3. The experimental setup for validation.  

Table 2 
The actual capacity of the selected batteries.  

Cell label cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8 

Actual capacity/Ah  2.2067  2.1219  2.1706  2.1913  2.1448  2.1102  2.1917  2.1472  

M. Ma et al.                                                                                                                                                                                                                                      



Applied Energy 324 (2022) 119678

8

process in the DST cycle input file considers the current compensation to 
implement the standard DST cycle. The DST current distribution is 
described in Fig. 4. The black solid line is the set current and the red 
solid line is the recorded actual current through the battery pack. The 
left picture Fig. 4(a) shows the current during the whole discharging 
process. One DST cycle for 360 s is enlarged shown in the right picture 
Fig. 4(b). 

The terminal voltage of each cell that takes the faults into account is 
presented in Fig. 5. It can be observed that the terminal voltage of cell 7 
suddenly drops when the short circuit switch closes. Owing to the 
inconsistency among cells, the fault characteristics of virtual connec-
tions are unclear. As can be seen from the enlarged picture on the right, 
the terminal voltage of cell 3 is higher than that of other cells during 
charging and lower during discharging. However, the voltage change of 
cell 3 is not significant compared with other cells. Fault detection is 
likely to cause misjudgment or missed judgment based on the terminal 
voltage only. Especially when the battery pack consists of a large 
number of cells, it is not an effective method to evaluate the fault ac-
cording to the terminal voltage intuitively. Therefore, the proposed 
multi-fault diagnosis method is applied to amplify the signal and 
reconstruct the fault signal. Multi-parameter is considered to improve 
the reliability of the fault diagnosis. 

4.2. Realization of fault detection contribution-based 

The OCV and ohmic resistance R0 of each cell are obtained by online 
identification based on the RLS, as shown in Fig. 6. Fig. 6(a) depicts the 
OCV distribution of each cell. The OCV is the same except that of cell 7. 
The OCV of cell 7 becomes divergent at the end of the discharge. Cell 7 
may occur some kinds of fault. The estimated results of R0 are shown in 
Fig. 6(b). It can be observed that R0 of cell 3 is significantly higher than 
others. Cell 3 may have increased internal resistance or virtual 
connection fault. A moving window is applied to OCV and R0 to reduce 
the influence of noise and improve the robustness of the diagnostic al-
gorithm on the premise of ensuring the authenticity of the data [43], 
which is equivalent to a low-pass filter. The size of the moving window is 
set to 200 by trial and error in this paper. Taking cell 1 as an example, 
Fig. 7 shows the OCV and R0 results before and after using the moving 
window. The data through the moving window is smoother without 
losing the authenticity of the original. 

The PCA model is established based on the monitored terminal 
voltage Ut, the estimated OCV, and R0 of each cell in the battery pack. 
Cell 5 is taken as the “median cell” [41] and its characteristics are used 
as the normal reference to build PCA model. The real-time characteris-
tics of the eight cells are recorded for testing. The contributions of Ut, 
OCV, and R0 of each cell to its corresponding statistic SPE are shown in 

Fig. 8. As can be observed from Fig. 8(a), (b), and (c), the contribution 
value of each cell characteristic parameter to the corresponding statistic 
SPE is different from each other. However, there exists no phenomenon 
that the contribution of one certain cell characteristic parameter to SPE 
increases or decreases significantly. The contribution difference of each 
cell characteristic parameter to SPE reflects the inconsistency among 
cells. If the contribution value of the cell is approximately zero, the 
corresponding characteristic of the cell is close to the “median cell”. If 
the contribution value of the cell is greater than zero, the corresponding 
characteristics of the cell are higher than the “median cell” level. 
Otherwise, the characteristics are smaller than that of the cell. As can be 
seen from Fig. 8(c), R0 of cell 2 and cell 6 is greater than that of cell 5. R0 
of cell 1 and cell 4 is lower than that of cell 5. The others are basically the 
same as that of cell 5. 

It can be observed from Fig. 8(d) that the contribution of Ut of cell 3 
to the statistic SPE increases or decreases, which corresponds to the 
process of charging and discharging under DST cycle, respectively. 
Combined with the analysis of Fig. 8(f), the contribution of R0 of cell 3 to 
SPE has increased by orders of magnitude compared to the “median 
cell”. R0 of cell 3 changes with the process. Therefore, it is verified that 
Ut and R0 of cell 3 are abnormal owing to the virtual connection fault 
instead of the increases in internal resistance. The internal resistance 
rising of the cell itself is a low-frequency characteristic, which changes 
with calendar aging or the environment, but does not fluctuate signifi-
cantly within a discharge cycle. However, the virtual connection fault 
did not cause the OCV to be abnormal compared to Fig. 8(b) and (e). 
This is the reason for joint multi-parameter diagnosis. The contribution 
of Ut of cell 7 to the SPE is significantly reduced at the end of discharging 
as shown in Fig. 8(g). The contributions of OCV and R0 are abnormal as 
presented in Fig. 8(h) and (i). It is judged that an ESC occurred in cell 7 
at the end of discharge. 

In summary, some types of faults will not cause abnormality of all 
parameters. For example, a virtual connection fault does not cause 
abnormal changes in OCV of the cell. Multi-parameter, Ut, OCV, R0, fault 
detection can improve the diagnostic reliability by calculating the con-
tributions of each cell according to its corresponding SPE. 

4.3. Verification of fault diagnosis reconstruction-based parallel PCA- 
KPCA 

After a fault is detected by the contribution-based PCA, the fault 
waveform is estimated through reconstruction-based parallel PCA-KPCA 
to help quantify the fault causes and evaluate the severity. The proposed 
method is verified and analyzed through the above experimental data in 
this section. Since the relationship between R0 and SOC can be 
approximately regarded as linear, and the Ut and OCV show typical 

Fig. 4. The current distribution under DST cycle condition. (a) The whole discharge process. (b) the local zoom of (a).  
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nonlinear characteristics, parallel PCA-KPCA is adopted to reconstruct 
the parameters of the faulty cell to estimate the fault waveform. The 
estimated fault waveform of cell 3 and cell 7 by the method described in 
Section 2 is shown in Fig. 9. The estimated fault waveform of the 
parameter is consistent with that of the actual fault waveform. The fault 
signals of Ut of cell 3 increase when charging and decrease when 

discharging as presented in Fig. 9(a). In combination with Fig. 9(c), it 
can be observed that the R0 of cell 3 increases during the whole DST 
cycle, especially there is a significant fluction around 2500 s. Cell 3 has 
occurred a serious virtual connection fault. The battery pack needs to be 
checked and repaired in time. The fault signals of cell 7 are shown in 
Fig. 9(d), (e), and (f). Ut drops at about 4300 s. The OCV and R0 do not 

Fig. 5. The terminal voltage distribution of each cell considering faults under DST cycle. (a) The whole discharge process. (b) the local zoom of (a).  

Fig. 6. The estimated results of each cell by the RLS. (a) the estimated OCV of each cell. (b) the estimated ohmic resistance R0 of each cell.  

Fig. 7. The parameter results with a moving window. (a) the OCV of cell 1. (b) the R0 of cell 1.  
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converge. It is determined that the positive and negative poles of cell 7 
are connected at about 4300 s. If cell 7 continues to work under this 
condition, cell 7 tends to have a serious over-discharge, which may 
cause an accident. 

Therefore, analysis of experimental results shows that the 
reconstruction-based parallel PCA-KPCA can accurately estimate the 
fault signals of Ut, OCV, and R0 of lithium-ion batteries for analyzing the 
fault causes, thereby improving the reliability of fault diagnosis. 

5. Conclusions 

We presented a novel multi-fault diagnosis method for a series- 
connected lithium-ion battery pack with a reconstruction-based contri-
bution based on parallel PCA-KPCA. The fault detection of contribution- 
based PCA in the combination of the characteristics of the battery pack is 
introduced. Thereafter, owing to the typical nonlinear characteristics of 
lithium-ion batteries, the reconstruction-based parallel PCA-KPCA 
technology is employed to reconstruct the ohmic resistance, terminal 
voltage, and open-circuit voltage of the faulty cell. The tested data of 
eight cells in series are collected to verify the accuracy of the proposed 
method, including inconsistency among the cells, virtual connection 
fault, and external short circuit. The results show that the proposed 

method contribution-based PCA accurately detects the fault in the bat-
tery pack and reconstruction-based parallel PCA-KPCA estimate the 
fault waveform of the faulty battery, which helps to investigate the fault 
causes. Besides, some types of faults will not cause abnormalities in all 
parameters of the battery. For example, a virtual connection fault did 
not cause abnormal changes in open-circuit voltage. Therefore, the 
terminal voltage, open-circuit voltage, and ohmic resistance are com-
bined to improve the reliability of fault diagnosis based on the model 
and multivariate statistical analysis methods. Moreover, the recon-
struction is performed only when a fault is detected, thereby reducing 
the computational cost. In practical applications, it needs much more 
driving data in real scenarios to optimize the diagnostic algorithm to 
satisfy actual requirements. 

Our future research on fault diagnosis of battery systems will focus 
on the following: on the one hand, employing real-world electric vehicle 
data to verify and optimize the proposed method to realize the appli-
cability to more types of fault and application of this method in real- 
world electric vehicles. On the other hand, developing a specific fault 
signal matrix between features and faults to achieve various fault 
detection, fault isolation, and fault cause analysis. 

Fig. 8. The contributions of the parameters, Ut, OCV, and R0, of each cell to its corresponding statistics SPE under different conditions. (a), (b), and (c) are fault-free 
considering the inconsistency; (d), (e), and (f) are with virtual connection fault; (g), (h), and (i) are with ESC. 
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