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a b s t r a c t

Accurate estimation of battery actual capacity in real time is crucial for a reliable battery management
system and the safety of electrical vehicles. In this paper, the battery capacity is estimated based on the
battery surface temperature change under constant-current charge scenario. Firstly, the evolution of the
smoothed differential thermal voltammetry (DTV) curves throughout the aging process is analyzed.
Then, the change of the battery surface temperature, which is equivalent to the area under the DTV
curve, over a specific voltage range is introduced as a direct feature of interest to reflect the battery actual
capacity. In addition, the temperature variation transformation is utilized to reduce the influence of the
initial battery inconsistency. Lastly, two battery degradation datasets are utilized to validate the proposed
method. The maximum root mean-square errors of the estimation results by the reference correlation
are less than 20 mAh and 60 mAh for the two employed batteries (respective nominal capacities are
740 mAh and 4800 mAh). Specifically, the mean estimation errors for the respective two batteries are
reduced by approximately 24.74% and 39.60% after the temperature variation transformation. The pro-
posed method is further compared with the existing DTV analysis method and demonstrates the su-
perior performance.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lithium-ion batteries have been extensively used as the energy
storage in electric vehicles (EVs) [1e4]. To maximize the battery
service life and alleviate the range anxiety, it is critical to monitor
the battery state of health (SoH), especially the capacity degrada-
tion state, through the battery management system (BMS) [5e7].
Therefore, the accurate estimation of the battery SoH in real time is
one of the most important areas in battery research. Recently, the
studies on the battery SoH estimation methods can be roughly
categorized into two groups, namelymodel-based and data-driven-
based methods.

For the model-based method, the equivalent circuit model or
the electrochemical model is usually adopted to characterize the
dynamic behavior of a battery, and the battery capacity is consid-
ered as the state variable, then the associated filter or observer
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algorithm is conducted to identify the battery SoH [8,9]. In addition
to identifying the health-related parameters directly, another
feasible method is to estimate the battery state of charge (SoC) first
using the model-based technique. On this basis, the battery ca-
pacity is calculated according to the Coulomb counting equation
[10,11]. It is worth noting that the estimation accuracy of this kind
of method is heavily dependent on the model accuracy. Although
the high-fidelity battery model can effectively improve the esti-
mation accuracy, it complicates the relevant matrix operation and
makes the on-board microcontroller suffer from an intensive
computational burden [6,12].

For the data-driven-based estimation method, the feature of
interest (FoI) that reflects the battery capacity loss is firstly
extracted from the battery operating data, and then the empirical
fitting method [13e15] or the machine learning method [16e18] is
used to establish the correlation between the extracted FoI and the
battery SoH. Specifically, selecting and identifying the effective FoI
is crucial for the accurate estimation of battery SoH. The commonly
used FoIs can be divided into direct and indirect ones, as summa-
rized in Fig. 1.

The direct FoIs are usually extracted directly from the battery
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

A Battery surface area [m2]
Capest Estimated battery capacity [Ah]
cp Heat capacity [J/�C]
h Heat convection coefficient [W/(m2�C)]
hvalley Height of Valley2
kT Scaling coefficientbkT Estimated scaling coefficient
m Battery mass [kg]
N Data size
_Q Heat generation rate [W/m3]
r Correlation coefficient
rk Search radius
T Battery surface temperature [�C]
Tenv Environment temperature [�C]
t Time [s]
V Battery terminal voltage [V]
Vlim,i Lower limit value of the voltage range [V]
Vlim,iþ1 Upper limit value of the voltage range [V]
VOCV Open circuit voltage [V]
Vstart Battery terminal voltage at the beginning of the

constant-current charge process [V]
Vend Battery terminal voltage at the end of the constant-

current charge process [V]
x Independent variable
x Mean value of independent variable
y Observation variable
y Mean value of observation variable

Subscripts
act actual

env environment
est estimated
lim limit
min minimum
ref reference
trans transformed
vari variation

Greek symbols
D A change in the value

Acronyms
BMS Battery management system
CC Constant-current
CV Constant-voltage
DTV Differential thermal voltammetry
DVA Differential voltage analysis
EV Electric vehicle
FoI Feature of interest
GPR Gaussian process regression
ICA Incremental capacity analysis
LCO Lithium cobalt oxide
LFP Lithium iron phosphate
NCA Nickel cobalt aluminum oxide
NCO Lithium nickel cobalt oxide
NMC Nickel manganese cobalt oxide
RMSE Root mean-square error
SG Savitzky-Golay
SoC State of charge
SoH State of health
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operating data, such as voltage, current, temperature, capacity and
time. For example, Ref. [16] adopted four features, i.e., the constant-
current (CC) charge time, the constant-voltage (CV) charge time,
and two slopes of the charge voltage curve at different regions, to
comprehensively reflect the battery aging phenomenon, and pro-
posed an improved Gaussian process regression (GPR) model for
Fig. 1. Summary of com
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the SoH estimation. In order to estimate the battery SoH from the
partial charging data, Refs. [13,17] selected the charged capacity
recorded in a specific voltage region as the FoI, and used the linear
regression and the random forest regression to characterize the
correlation between the FoI and the battery capacity fade, respec-
tively. In Ref. [18], the duration of the certain voltage interval was
monly used FoIs.



Table 1
Technical specifications of tested batteries.

Cathode material LCO/NCO NCA

Anode material Graphite Graphite
Nominal capacity [mAh] 740 4800
Nominal voltage [V] 3.7 3.6
Charge cutoff voltage [V] 4.2 4.2
Discharge cutoff voltage [V] 2.7 2.5
Weight [g] 19.5 ± 0.5 Max. 69
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chosen to quantify the battery SoH variation, and a fixed size least
squares-based support vector machine with a mixed kernel func-
tionwas adopted tomap the relationship between the extracted FoI
and the SoH. As can be seen, it is generally easy and straightforward
to extract the direct FoIs. However, the extracted direct FoIs are
closely associated with the resolution of the measured data. For
example, the number of the recorded features decreases with the
increasing measured data interval within a certain range, which
may in turn deteriorate the capacity estimation performance [17].
In addition, this kind of FoIs cannot intuitively characterize the
battery aging mechanism, and thus trial and error are required to
determine the suitable region of the measured data which is
strongly correlated with the battery capacity loss. This indicates
that the estimation performance is also sensitive to the predefined
boundary values, such as the measurement duration [19] and the
voltage range [13,17,18].

Different from the direct FoIs, the indirect FoIs are generally
obtained based on the differential analysis of the battery operating
data during the CC charge and discharge. Generally, the curve pa-
rameters, such as the peak/valley location, height, area, and so on,
are compared in the differential analysis, and the parameter
demonstrating the significant correlation with the battery capacity
fade is selected as the indirect FoI. The incremental capacity anal-
ysis (ICA) and the differential voltage analysis (DVA) are two
frequently used differential analysis methods. These two methods
transform the plateau regions in the voltage curve into the identi-
fiable peaks in the incremental capacity (IC)/differential voltage
(DV) curve by differentiating the capacity/voltage with respect to
the voltage/capacity. The peaks in the IC and DV curves represent
the phased transitions in the electrodes and the location of a phase
equilibrium, respectively [20,21], and the evolution of the corre-
sponding peak information indicates the degradation mechanism
during the battery aging. Hence, ICA/DVA is often used to assist the
direct FoI selection [17]. Besides the current and voltage measure-
ments, the temperature data also contain rich characteristic infor-
mation [22e24]. Hence, in addition to the ICA/DVA, the
temperature differential analysis has recently emerged as another
effective method to characterize the aging behavior of lithium-ion
batteries. There have been a series of studies concerning this
technique. For example, Ref. [20] proposed a differential thermal
voltammetry (DTV) technique to track the degradation of the nickel
manganese cobalt oxide (NMC) cathode battery under the natural
convection environment. In Ref. [25], the battery SoH was esti-
mated through the quantitative analysis of the DTV peak evolution,
and the results based on the thermal imaging camerameasurement
indicated that the DTV diagnosis for the employed battery
demonstrated no significant dependent on the position of the
thermocouple. Furthermore, Ref. [26] extracted four strong-
correlation FoIs on the DTV curve, and fed them into the GPR to
track the battery capacity degradation. To verify the feasibility of
implementing the DTV technique in the real world BMS, Ref. [27]
carried out this technique on the battery pack under galvanostatic
(dis)charge with forced air convection, which is a more realistic
operating condition for EV applications. In Ref. [28], the application
of the DTVwas extended to the batterywith lithium iron phosphate
(LFP) chemistry, and the peak-to-peak capacity was found to be a
useful FoI to represent the battery capacity fade under the elevated
temperature condition. For lithium sulfur battery, which is one of
the promising next generation batteries, Ref. [29] demonstrated the
feasibility of using the DTV technique to track shuttle during
charging. Similar to the DTV analysis technique, Refs. [30,31]
extracted the FoI from the differential temperature (DT) curve to
identify the battery capacity fade. Generally, the DTV and the DT
analysis methods do not require the current measurement. This
means that this technique can be applied on the parallel-connected
3

battery pack without the branch current measurement. Compared
with the ICA/DVA technique, the DTV/DT technique prefers a higher
current rate and does not require isothermal conditions, to guar-
antee that the battery heat generation dominates over the heat
transfer. These indicate that the DTV/DT is a promising online SoH
estimationmethod for practical use. However, due to the numerical
differentiation, the IC, DV, DTV, and DT curves will be distorted if
obtained directly from the raw data, which are influenced by the
noise disturbance, sampling time interval, battery chemistry, and so
on. Hence, a series of data processing methods are required, which
increases the computational efforts of the on-board BMS.

Considering the aforementioned difficulties, this paper devel-
oped a battery capacity estimation method directly based on the
measured battery surface temperature under the CC charge sce-
nario. In the proposed framework, the DTV analysis is used to aid
the voltage interval determination, then the reference correlation
between the decayed battery capacity and the extracted FoI is
established offline. Based on the reference correlation, the battery
actual capacity can be estimated online when the battery charge
voltage covers the determined voltage interval. Besides, the tem-
perature variation transformation is utilized to reduce the influence
of the initial battery consistency. Two different battery degradation
datasets based on different electrodematerials are adopted, and the
validation results show that the correlation extracted based on the
reference battery can be used to identify the capacity of other
batteries in one dataset with a satisfying accuracy, indicating the
feasibility of the proposed method.
2. Experimental data analysis

2.1. Dataset description

The test data are based on two types of batteries: (1) eight
740 mAh pouch batteries (numbered from #1 to #8), which consist
of a graphite negative electrode and lithium cobalt oxide and
lithium nickel cobalt oxide (LCO/NCO) positive electrode [32,33],
(2) six 4800 mAh 21,700 batteries (numbered from #9 to #14) with
nickel cobalt aluminum oxide (NCA) cathode material. The detailed
technical specifications of the employed batteries are listed in
Table 1.

Specifically, the LCO/NCO battery degradation dataset is ob-
tained fromUniversity of Oxford. Totally eight batteries were cycled
by an 8-channel Biologic MPG 205 battery tester, and the batteries
were housed in a Binder MK53 thermal chamber at 40 �C. Six NCA
batteries were tested by the 16-channel NBT5V20AC16-T battery
cycler in one of the authors’ laboratory. During the tests, the NCA
batteries were placed in a GD-4015 thermal chamber at a constant
environment temperature of 25 �C, and the battery surface tem-
perature was monitored and recorded by the PT100 thermocouple.
The detailed test procedures for the two types of batteries are
presented in Table 2, where C-rate is the measurement of the
charge or discharge current with respect to its nominal capacity.

The evolution of the measured battery parameters throughout
aging is plotted in Fig. 2. Specifically, the discharged capacities of



Table 2
Battery test procedures.

Procedure LCO/NCO NCA

1 Cycling tests
1.1 Charge test CC charge at 2 C-rate CCCV charge at 0.5 C-rate
1.2 Discharge test Artemis drive cycle discharge CC discharge at 0.5 C-rate

2 Characterization tests
2.1 Charge test CC charge at 1 C-rate CCCV charge at 1 C-rate
2.2 Discharge test CC discharge at 1 C-rate CC discharge at 0.5 C-rate
2.3 Pseudo-OCV test CC charge/discharge at 0.05 C-rate CC charge/discharge at 0.05 C-rate
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LCO/NCO and NCA batteries recorded in the characterization tests
are shown in Fig. 2(a) and (b), respectively, and the measured
surface temperatures for battery #1 (LCO/NCO) and battery #9
(NCA) at different aging states are exemplarily shown in Fig. 2(c)
and (d), respectively. It can be seen from Fig. 2(a) that the dis-
charged capacities of battery #2 and battery #5 dramatically drop
at the end of the cycle test. The corresponding battery surface
temperatures also present the distinct variation tendency
comparing to those in the former cycles. This kind of phenomenon
is not studied in this paper and thus the corresponding data are not
considered. Besides, as aging progresses, the battery surface tem-
perature curve generally shifts to the lower time level due to the
reduced CC charge time, and the variation rate of the battery sur-
face temperature is changed at different aging states, as shown in
Fig. 2(c) and (d), indicating that the battery thermal characteristic is
closely related to the battery degradation. In addition, it can be
concluded from Fig. 2 that compared with the NCA battery degra-
dation dataset, the LCO/NCO battery degradation dataset contains
more data points and covers a wider range of capacity loss. Hence,
only the LCO/NCO battery degradation dataset is used for the pre-
liminary analysis and the method development.
2.2. DTV curve acquisition

The DTV technology is used in this work to analyze the evolu-
tion of the battery characteristics throughout the aging cycles. The
DTV parameters can be calculated by differentiating the battery
surface temperature with respect to the terminal voltage during CC
charge. Furthermore, it can be decoupled to the ratio of tempera-
ture and voltage differentials with respect to time, expressed as
[20,25]

DTVk ¼
dTk
dVk

¼ Tk � Tk�1
Vk � Vk�1

¼ Tk � Tk�1
tk � tk�1

�
Vk � Vk�1
tk � tk�1

(1)

where Tk and Vk denote the battery surface temperature and ter-
minal voltage measurements during CC charge and discharge at
time tk, respectively. The time interval tk - tk-1 is closely related to
the sampling period of the BMS. In this work, the above data are
extracted from the 1 C-rate CC charge cycles in the characterization
tests.

Generally, the temperature and/or voltage measurements
contain noises in a real application, and these interferences will be
further amplified by the differential operation if the adopted
voltage interval is too small. On the contrary, some useful infor-
mation will be lost with a large differentiation interval. Since the
voltage interval is proportional to the time interval during the CC
charge period, the time interval is set as 20 s in this work. Besides,
the Savitzky-Golay (SG) filter is adopted to acquire the clear battery
surface temperature and DTV curves. The algorithmic procedure of
4

the SG filter is not detailed here but can be referred to Refs. [34,35].
Themeasured battery terminal voltage and surface temperature are
plotted in Fig. 3(a) and (b), respectively. As can be seen, the
measured temperature is much noisier than the voltage measure-
ment. Hence, the measured temperature should be smoothed by
the SG filter before the differential operation. The processed battery
surface temperature and DTV curves are compared to the original
curves obtained based on the raw data, as shown in Fig. 3. Specif-
ically, Curve #1 in Fig. 3(b) represents the DTV curve directly
calculated based on the measured data, Curve #2 represents the
DTV curve calculated based on the filtered battery surface tem-
perature, and Curve #3 represents the DTV curve obtained by
further processing Curve #2 with the SG filter. It can be observed
from Fig. 3 that with the adopted SG filter and the selected time
interval, the noises on the original temperature and DTV curves can
be effectively smoothed, and the features on the curves are well
preserved, which is critical for the further analysis in the next
section.
3. Capacity estimation method

3.1. FoI selection

Based on the aforementioned data smoothing processes, the
evolution of DTV curves throughout the aging process is depicted in
Fig. 4(a). It can be clearly seen that two valleys (Valley1 and Valley2)
and two peaks (Peak1 and Peak2) exist on the acquired DTV curve.
The peak/valley height gradually decreases as the battery ages, and
the peak/valley position progressively shifts to a higher (Valley1,
Peak1 and Peak2) or lower (Valley2) voltage level with the
increasing cycle number. Hence, the position-based and the height-
based FoIs are commonly employed in the literature to reflect the
battery capacity degradation.

Similar to the ICA based methods, the peak/valley area can also
be considered as one useful FoI on the DTV curve, since it can
capture the changes in the peak/valley shape, as shown in Fig. 4(a).
The area under the relevant DTV peak/valley can be expressed as

Areai ¼
ðt¼Vlim;iþ1

t¼Vlim;i

dT
dV

dt ¼ T
�
Vlim;iþ1

�� T
�
Vlim;i

� ¼ DTi (2)

where Areai (i ¼ 1e4 in this work) is the area under peak/valley,
Vlim,i and Vlim,iþ1 are the lower and upper limit values of the voltage
range, respectively, T(Vlim,i) and T(Vlim,iþ1) are the battery surface
temperature when V reaches Vlim,i and Vlim,iþ1, respectively, and DTi
is the corresponding battery surface temperature change.

It can be seen from (2) that Areai indicates the change of the
battery surface temperature in the voltage range of [Vlim,i, Vlim,iþ1],
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and the identification of Areai can be simplified to the calculation of
DTi between the battery surface temperatures at Vlim,i and Vlim,iþ1.
This means that we can directly obtain the FoI from the tempera-
ture measurements, instead of extracting the position-based and
height-based FoIs from the processed DTV curve. Specifically, the
location of Vlim,i and the relevant calculation method are sche-
matically demonstrated in Fig. 4(d), where Vstart and Vend represent
the battery terminal voltage at the beginning and the end of the CC
charge process, respectively, Vvalleyi and Vpeaki represent the posi-
tions of Valleyi and Peaki, respectively.

The changing trend of the curve area throughout aging varies in
different voltage ranges. Take Peak1 as an example, although in a
certain aging state, the right part of the peak slightly rises as aging
progresses, the left part obviously declines during cycling, resulting
in the overall decreasing area, as shown in Fig. 4(b). For Valley2 as
shown in Fig. 4(c), the curve variation rates at initial life are
generally larger than those at middle and late life, which may cause
the different change tendencies of Area3 at different cycling stages,
although with the decreasing valley height. This may decrease the
monotonicity of the relationship between DT3 and the battery ca-
pacity. Hence, it is of great significance to select the appropriate
voltage range.

In order to comprehensively and quantitatively investigate the
influence of the charge voltage range on the established correla-
tion. The evolutions of capacity for battery #1 with respect to DT in
the voltage ranges of [Vlim,i, Vlim,iþ1] (i ¼ 1e4) are demonstrated in
Fig. 5, and the corresponding correlation coefficients (rx,y) are also
displayed in the figures. rx,y can be calculated by [36]

rx;y ¼

PN
i¼1

ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðyi � yÞ2

s ; x ¼ 1
N

XN
i¼1

xi; y ¼ 1
N

XN
i¼1

yi

(3)

where the independent variable x and the observation y correspond
to the selected FoI and the battery capacity, respectively, x and y
denote mean values of x and y, respectively, and N represents the
data size.

It can be observed from Fig. 5 that the variation of DT in the
range of [Vlim,2, Vlim,3] (DT2) is monotonic with respect to the bat-
tery capacity, and demonstrates the strongest correlation with the
battery capacity, with the highest |rxy| of 0.9729. This is consistent
with the aforementioned analysis. Therefore, DT2, which is equiv-
alent to Area2, is selected as the FoI in this work. Besides, the cor-
relation coefficients based on the test data of all eight batteries are
listed in Table 3. It can be concluded that DT2 presents the strongest
correlation with the battery capacity for all tested batteries
(marked with bold characteristic), suggesting the universality of
the selected FoI for the batteries in this work.
3.2. Battery surface temperature transformation

Considering the differences among the batteries, the correlation
established based on one battery cannot always be applied to other
ones. In order to improve the universality of the established
Fig. 2. Evolution of batteries parameters throughout the aging process: capacity fade
curves of (a) LCO/NCO batteries at 40 �C and (b) NCA batteries at 25 �C; evolution of
battery surface temperature for (c) battery #1 and (d) battery #9 (The line color
changes from black to light blue corresponds to the increasing cycle number. For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.) (The data of LCO/NCO batteries are obtained from
Refs. [32,33].)



Fig. 3. (a) Measured battery terminal voltage as well as comparison between original
and processed curves (b) battery surface temperature; (c) DTV.

Fig. 4. Evolutions of (a) DTV curves; (b) Peak1 and (c) Valley2 (the line color changes
from black to light blue corresponds to the increasing cycle number); (d) schematic
representation of different FoIs and voltage ranges (the light blue region corresponds
to Area2). (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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correlation, a battery surface temperature transformation method
is introduced in this section to reduce the influence of battery
inconsistency.

The heat generation during the CC charge can be calculated as
[37]



Fig. 5. Evolution of capacity for battery #1with respect to DT in the voltage ranges of
(a) [Vlim,1, Vlim,2]; (b) [Vlim,2, Vlim,3]; (c) [Vlim,3, Vlim,4]; (d) [Vlim,4, Vlim,5].

J. Yang, Y. Cai and C. Mi Energy 241 (2022) 122879
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_Q ¼ IðV �VOCV Þ þ IT
vVOCV

vT
(4)

where _Q is the heat generation rate, I is the current, VOCV represents
the open circuit voltage.

Assuming the temperature distribution inside the battery is
uniform during the charging process, the battery temperature
variation rate (dT/dt) can be expressed as (5) based on the lumped
thermal model [30,37], where m is the battery mass, cp is the heat
capacity, h is the heat convection coefficient, A is the battery surface
area, and Tenv is the environment temperature.

dT
dt

¼
_Q

mcp
� hA
mcp

ðT � TenvÞ (5)

Specifically, the second term on the right side of (5) represents
the heat loss from the battery surface to the environment.
Considering the limited surface temperature change for the new
battery in this study, and the generally well-insulated batteries in
the vehicle application [38], the influence of heat dissipation on the
battery surface temperature variation can be assumed as negligible,
and (5) can be rewritten as

dT
dt

z
_Q

mcp
¼ I
mcp

�
ðV �VOCV Þþ T

vVOCV

vT

�
(6)

where cp can be considered as a constant due to the limited battery
surface temperature change. ðV �VOCV Þ þ TvVOCV=vT in (6) is
strongly influenced by the operating temperature, SoC, SoH, battery
chemistry, production process, and so on [30,37,39]. It can be
concluded that the thermal characteristic of two batteries may be
diverse even at the identical aging state, and the dT/dt curves will
almost overlap only when the two batteries have similar charac-
teristics. Hence, assuming the batteries at similar SoHs are charged
from the same initial SoC, the influence of the battery inconsistency
can be reduced by scaling the actual dT/dt curve to the reference
curve. As discussed in Section 2, it is difficult to obtain a clear dT/dt
curve in the real application due to the measurement disturbance
and differential operations. Instead, we can process the tempera-
ture variation curve (T-Toffset) directly considering dT/dt¼ d(T-Toffset)/
dt. It should be noted that the battery aging is closely associated
with the variation of dT/dt curve, thus only the temperature curves
at the beginning of the cycle test, i.e., with similar capacities, are
employed to conduct the transformation.

Based on the aforementioned analysis, the battery surface
temperature transformation procedure mainly includes two steps.
Firstly, the temperature variation values of the reference and actual
batteries are obtained by subtracting the offset values from the
corresponding measured temperatures, where the offset value is
calculated by averaging the battery surface temperature during the
CC charge process. Then, the scaling coefficient kT is determined by
minimizing the root mean-square error (RMSE) between the
reference temperature variation values (Tvari,ref) and the actual
temperature variation values after transformation (Tvari,act,trans). The
objective function is

bkT ¼ argminRMSEðkTÞ (7)

where bkT is the estimated kT, and the detailed expression of RMSE
(kT) is



Table 3
Correlation coefficients between capacity and DT for eight batteries in different voltage ranges.

Voltage range Number

#1 #2 #3 #4 #5 #6 #7 #8

[Vlim,1, Vlim,2] �0.8790 �0.4182 �0.8585 �0.9425 �0.4289 �0.9456 �0.6441 �0.9396
[Vlim,2, Vlim,3] 0.9729 0.9700 0.9529 0.9531 0.9094 0.9605 0.9608 0.9773
[Vlim,3, Vlim,4] �0.7484 �0.4693 �0.3913 �0.8311 0.4470 �0.3110 0.2757 �0.5332
[Vlim,4, Vlim,5] 0.5077 0.3656 0.1591 0.4308 �0.1535 0.3227 0.4324 0.7830

Fig. 6. Comparison of battery surface temperature variation curves (a) before and (b)
after transformation.

Table 4
RMSE between reference and actual temperature variation values.

Number #2 #3 #4

kT 1.0071 1.5962 1.03
RMSE [�C] Before 0.0177 0.1206 0.02

After 0.0175 0.0208 0.01

J. Yang, Y. Cai and C. Mi Energy 241 (2022) 122879
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8>>>>>>>>>>>>><>>>>>>>>>>>>>:

RMSE

0@kT

1A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

h
Tvari;ref ;i � Tvari;act;trans;iðkTÞ

i2,
N

vuut
Tvari;act;trans;iðkT Þ ¼ kTTvari;act;i

Tvari;ref ;i ¼ Tref ;i �
XN

i¼1
Tref ;i

,
N

Tvari;act;i ¼ Tact;i �
XN

i¼1
Tact;i

,
N

(8)

where N is the size of the measured data, and Tvari,act,i is the actual
temperature value before the transformation, Tref and Tact are the
reference and actual battery surface temperatures, respectively.
Specifically, Tvari,act,trans(kT) is computed based on kT ranging from
kT,0-rk to kT,0þrk, with a certain interval DkT, where kT,0 and rk denote
the predetermined initial value and search radius, respectively.

The comparisons of battery surface temperature variation
curves, as well as the differences between the reference and actual
temperature variation curves are exemplarily presented in Fig. 6. In
this case, Tvari,ref represents temperature variation curves of battery
#1, Tvari,act and Tvari,act,trans represent the temperature variation
curves of battery #3 before and after the transformation, respec-
tively. In this study, rk and DkT are set as 0.5 and 0.01, respectively,
and kT,0 is calculated as

kT ;0 ¼ Tvari;ref ;min

.
Tvari;act;min (9)

where Tvari,ref,min and Tvari,act,min are the minimum values of the
reference and actual temperature variation, respectively, as illus-
trated in Fig. 6(a).

The extracted scaling coefficient kT for battery #3 is 1.5962. It
can be seen that the transformed temperature variation curve of
battery #3 canwell overlap that of the reference battery. In order to
quantitatively evaluate the performance of the curve trans-
formation, the obtained kTs and the RMSEs for batteries #2 to #8
are presented in Table 4. It can be observed from Table 4 that the
discrepancy between the reference and actual temperature varia-
tion curves can be effectively reduced after the curve trans-
formation, especially for batteries #3 and #8. Hence, it is feasible to
#5 #6 #7 #8

52 0.8229 0.7876 0.8587 0.7351
26 0.0909 0.0916 0.0575 0.1209
99 0.0613 0.0376 0.0227 0.0332
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transform the temperature variation curves by vertical scaling.
3.3. Capacity estimation framework

Based on the aforementioned discussion, the proposed method
mainly consists of two parts, i.e., offline extraction and online
estimation, as shown in Fig. 7.

The offline extraction part is performed after the test of the
selected reference battery. Firstly, the smoothed surface tempera-
tures are obtained based on the test data from the laboratory ex-
periments. Secondly, the complete DTV curves are further acquired
through the differential and smoothing operations. Thirdly, the
evolution of the DTV curves throughout the aging process is
analyzed to determine the area, i.e., the voltage range [Vlim,ref,i,
Vlim,ref,iþ1], demonstrating the strongest correlation with the bat-
tery capacity loss. Then, the temperature changes in the selected
voltage range (DTref) at different aging states are extracted, and the
reference regression function between the battery capacity and
DTref is established. When the offline extraction procedure is
finished, the battery surface temperatures extracted at the initial
characterization test, the voltage range, and the detailed co-
efficients of the reference regression function are stored in the on-
board BMS for the online battery capacity estimation.

The online estimation part is conducted when the battery is
operated under the CC charge scenario. In step 1, kT is identified by
comparing the measured temperatures with the stored reference
temperatures, as detailed in Section 3.2. Besides, based on the
measured data, the actual voltage range [Vlim,act,i, Vlim,act,iþ1] is
determined according to the area selected offline. It should be
noted that the temperature transformation and the voltage range
determination for each battery are implemented only when the
Fig. 7. Proposed DT-based capac

9

first CC charge process is finished. In step 2, DTact is obtained when
the battery terminal voltage covers the preset [Vlim,act,i, Vlim,act,iþ1],
and the simple moving average smoothing method can be
employed to filter the measurement noises. In step 3, the trans-
formed battery surface temperature change (DTtrans) is calculated
by multiplying the actual one (DTact) with the obtained scale factor
(kT), i.e., DTtrans¼ DTact� kT. In step 4, the battery actual capacity can
be obtained by substituting DTtrans into the established reference
regression function.
4. Validation and discussion

4.1. Capacity estimation performance analysis

(1) Influence of temperature transformation: The evolutions of
capacity with respect to the temperature change before and
after the temperature transformation for eight LCO/NCO
batteries are demonstrated in Fig. 8(a) and (b), respectively.
In these figures, the solid curves represent the reference
correlation extracted based on battery #1, which can be
mathematically expressed as

Capest ¼ 112:8DT2trans þ 362:5DTtrans þ 696:9 (10)

where Capest represents the estimated battery capacity.
The detailed RMSEs of the battery capacity estimation results

are listed in Table 5 for the quantitative evaluation. It can be
observed from Fig. 8(a) that for some batteries, the estimated ca-
pacities are always higher (such as battery #3) or lower (such as
battery #8) than the actual ones, which correspond to relatively
large RMSEs (the RMSEs of batteries #3 and #8 can reach as high as
ity estimation framework.



Fig. 8. Evolutions of capacity with respect to the temperature change (a) before and
(b) after transformation for eight LCO/NCO batteries (battery #1 as the reference one).

Table 6
Mean RMSEs of capacity estimation results by reference correlation based on eight
LCO/NCO batteries.

Reference number Mean RMSE
[mAh]

Reference number Mean RMSE
[mAh]

Before After Before After

#1 20.75 14.49 #5 21.12 18.94
#2 18.62 14.14 #6 20.84 16.04
#3 34.98 14.84 #7 19.15 16.19
#4 19.35 15.86 #8 19.42 15.68
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28.49 mAh and 27.19 mAh, respectively). By contrast, the estimated
capacities for eight batteries based on the transformed temperature
change are closer to the reference correlation curve, and the cor-
responding RMSEs can be generally reduced within 20 mAh (the
battery nominal capacity is 740 mAh), as shown in Table 5. These
suggest that the temperature transformation method can effec-
tively reduce the influence of the initial battery inconsistency on
the capacity estimation accuracy.

Furthermore, in order to evaluate the overall performance of the
proposed method, the mean RMSEs of the capacity estimation re-
sults by the reference correlation for eight batteries are summa-
rized in Table 6. The mean RMSE can be calculated as.
Table 5
RMSEs of capacity estimation results by reference correlation based on battery #1.

Number RMSE [mAh] Number RMSE [mAh]

Before After Before After

#1 11.65 11.65 #5 19.47 15.67
#2 15.09 15.38 #6 22.84 14.02
#3 28.49 17.32 #7 26.34 16.63
#4 14.91 15.10 #8 27.19 10.13

10
RMSE¼
X8
i¼1

RMSEi =8 (11)

where RMSE represents the mean RMSE, RMSEi represents the
RMSE of the capacity estimation results when battery #i is
considered as the reference battery. It can be observed that for all
eight tested LCO/NCO batteries, the estimation results based on
DTtrans demonstrate a superior accuracy compared to those directly
based on DTact (the mean estimation error are reduced by approx-
imately 24.74%), validating the universality of the proposed
method.

(2) Comparisonwith the existing DTV analysis method: The DTV
analysis method is another efficient temperature-based
technique for the battery capacity estimation. Based on the
evolution of the smoothed DTV curves as shown in Fig. 4(a),
the height of Valley2 is selected as the FoI in this work. The
evolutions of the battery capacity with respect to the height
of Valley2 before and after the temperature transformation
for eight batteries are demonstrated in Fig. 9. Specifically, the
valley heights in Fig. 9(b) are extracted from the DTV curves
based on the transformed battery surface temperature. Be-
sides, the solid curves in Fig. 9 represent the reference cor-
relation extracted based on battery #1, and are expressed as

Capest ¼ � 0:4756h2valley � 26:36hvalley þ 387:6 (12)

where hvalley represents the height of Valley2.
The RMSEs of the capacity estimation results by (12) are listed in

Table 7. It can be observed from Fig. 9 and Table 7 that the esti-
mation error can be effectively reduced after the temperature
transformation. Especially for batteries #3 and #8, the corre-
sponding RMSEs decrease from 65.79 mAh and 58.17 mAh to
16.37 mAh and 11.47 mAh, respectively. The results indicate that
the proposed temperature transformation method can also be
applied on the DTV analysis technique with a satisfying estimation
accuracy.

In addition, the performances of the existing DTV analysis
method and the proposed DT-based method are compared in
Fig. 10, where the mean RMSEs of the estimation results by the
reference correlations based on all the tested LCO/NCO batteries are
Table 7
RMSEs of capacity estimation results by reference correlation based on battery #1.

Number RMSE [mAh] Number RMSE [mAh]

Before After Before After

#1 10.57 10.57 #5 39.00 14.98
#2 24.56 25.42 #6 28.45 17.00
#3 65.79 16.37 #7 41.17 20.34
#4 12.59 8.65 #8 58.17 11.47



Fig. 10. Comparison of capacity estimation results between DTV and DTebased
methods.

Fig. 11. Evolutions of capacity with respect to the temperature change (a) before and
(b) after transformation for six NCA batteries (battery #9 as the reference one).

Fig. 9. Evolutions of capacity with respect to the valley height (a) before and (b) after
transformation for eight LCO/NCO batteries (battery #1 as the reference one).
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displayed to make a straightforward comparison. It can be seen
that: (1) the DT-based method generally outperforms the DTV
analysis method, even in the condition that the temperature
11
transformation is not conducted; (2) the temperature trans-
formation method is useful to reduce the influence of the initial
battery inconsistency on the estimation accuracy for bothmethods;
(3) the proposed method demonstrates the superior accuracy, i.e.,
the lowest RMSE, in most cases.
4.2. Validation on NCA battery degradation dataset

Six groups of battery aging data from the NCA battery degra-
dation dataset are employed in this section to further validate the
universality of the proposed method.

Firstly, the appropriate voltage ranges are determined based on
the correlation analysis. Then, the battery capacity estimation re-
sults are obtained and compared in Fig. 11(a) and (b). In these fig-
ures, battery #9 is considered as the reference battery, and the
linear regression function, expressed as (13), is employed for the
capacity estimation.

Capest ¼ 249:51DTtrans þ 3489 (13)

It can be observed from Fig. 11 that compared with the esti-
mated capacities without the temperature transformation, the



Table 8
Mean RMSEs of capacity estimation results by reference correlation based on six
NCA batteries.

Reference number Mean RMSE
[mAh]

Reference number Mean RMSE
[mAh]

Before After Before After

#9 99.54 52.36 #12 99.27 49.87
#10 73.44 50.12 #13 87.52 49.98
#11 86.86 53.42 #14 73.12 53.16
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estimation results after the transformation are closer to the refer-
ence correlation curve, which is similar to the results obtained
based on the LCO/NCO battery test data. Besides, in the case of
constructing the reference regression functions based on the test
data of different batteries, the corresponding mean RMSEs of the
estimated capacities are listed in Table 8. It can be concluded that
the overall mean RMSEs are reduced approximately 39.60% for the
employed NCA batteries after the temperature transformation.
5. Conclusion

A battery capacity estimationmethod is developed in this paper,
which is based on the change of the battery surface temperature
during the specific charge voltage interval. Besides, the tempera-
ture variation curve transformation is proposed to reduce the initial
battery thermal inconsistency. Compared with the existing DTV
analysis method, the proposed DT-based method presents the
following advantages.

(1) More easily obtained FoI. Due to the measurement noise, the
pre-smoothing step is necessary to extract the useful infor-
mation in the DTV curve. For the proposed method, the DTV
analysis is only required to determine the appropriate
voltage range offline. While in the online estimation pro-
cedure, only the battery surface temperatures corresponding
to Vlim,act,i and Vlim,act,iþ1 are required to calculate DT directly,
which effectively reduces the computational burden and
enables a fast SoH estimation.

(2) Improved universality. With the temperature trans-
formation, the established reference correlation based on
one battery can be applied to other batteries with an
enhanced accuracy. Specifically, the mean RMSEs are
reduced by approximately 24.74% and 39.60% for the tested
LCO/NCO and NCA batteries, respectively.

It should be noted that besides the battery inconsistency, the
noise interference and the measurement resolution of the ther-
mocouple also have a significant impact on the estimation accuracy
of the battery actual capacity. In addition, the feasibility of the
proposed method in the low ambient temperature has not been
verified in this paper. Therefore, the aforementioned influences will
be considered in the future work to improve the adaptivity of the
developed method for real application.
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