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Abstract— State-of-health (SoH) is one of the critical battery
states that must be estimated and closely monitored by the
on-board battery management system in electric vehicles (EVs).
In this study, the battery SoH, especially the capacity fade,
is calculated based on the decoupled characteristic of the
charging current under the constant-voltage (CV) scenario.
First, a dynamic-decoupled parameter identification method is
proposed to extract the parameters of the simplified second-
order resistor–inductor (RL) network-based equivalent circuit
model (ECM), developed by the authors. Second, the dynamic
characteristics of the decoupled CV charging currents at different
aging states are qualitatively investigated, and the corresponding
time constant is selected as a feature-of-interest (FoI) to reflect
the battery capacity degradation. Third, the aging data based
on two types of lithium-ion batteries are employed to evaluate
the performance of the proposed method. Verification results
demonstrate that the proposed parameter identification method
yields a reduced computational cost with a satisfactory fitting
performance, compared to the conventional methods. The pro-
posed parameterization method and the selected FoI guarantee
the root-mean-square errors of the estimated SoH less than 2%,
and the comparative results further validate the superiority of
the selected FoI in terms of the SoH estimation accuracy.

Index Terms— Constant-voltage (CV) charge, feature-of-
interest (FoI), lithium-ion battery, parameter identification, state-
of-health (SoH).

I. INTRODUCTION

ELECTRIC vehicles (EVs) have become more and more
popular in the past decade due to their superior per-

formance, ability to displace fossil fuel, and reduction in
greenhouse gas emissions [1]. The onboard energy storage
systems, namely lithium-ion batteries, are considered as the
crucial component in EVs. The driving range, charging time,
life cycle, and safety are major concerns of the onboard energy

Manuscript received July 27, 2021; revised October 7, 2021; accepted
October 27, 2021. Date of publication November 8, 2021; date of current
version April 20, 2022. This work was supported in part by the National
Science Foundation, USA, under Grant 1507198, in part by the China
Postdoctoral Science Foundation under Grant 2020M671356, in part by the
Natural Science Foundation of Jiangsu Province under Grant BK20210773,
and in part by the National Natural Science Foundation of China under Grant
U1764257. (Corresponding authors: Chunting Chris Mi; Yingfeng Cai.)

Jufeng Yang and Yingfeng Cai are with the Automotive Engineering
Research Institute, Jiangsu University, Zhenjiang 212013, China (e-mail:
yjf@ujs.edu.cn; caicaixiao0304@126.com).

Chunting Chris Mi is with the Department of Electrical and Computer
Engineering, San Diego State University, San Diego, CA 92182 USA (e-mail:
mi@ieee.org).

Digital Object Identifier 10.1109/TTE.2021.3125932

storage system [2], [3]. In particular, the state-of-health (SoH)
of the onboard battery is an essential parameter that should be
accurately estimated and monitored to ensure a safe and reli-
able operation [4], [5]. In general, the actual battery capacity is
one of the critical battery health indicators as it degrades over
time with cycle usage. Considerable research efforts have been
conducted recently to estimate the actual battery capacity.

A. Problem Statement

The actual battery capacity can be directly measured
through test-based methods. However, these kinds of method
require extensive test effort as well as expensive test equip-
ment, which is unavailable for on-board applications [6].
Hence, the research on the SoH estimation is mainly focused
on directly identifying the actual battery capacity or extracting
the feature-of-interest (FoI) to characterize the actual battery
capacity, based on the battery operating data. Compared to
the discharging scenario, the data in the charging scenario
are relatively stable, predictable, and rich in aging informa-
tion. The existing charging protocols include constant-current
constant-voltage (CC–CV), CC–CV–CC, constant-power CV
(CP–CV), multistage-constant-current CV (MC-CCV), and so
on [7]–[9], as shown in Fig. 1, where Vcut and Vtr represent the
charge cutoff voltage and the transition voltage, respectively,
and Vcut ≥ Vtr. It can be seen that CC and/or CV phases
are widely utilized in the charging protocols. Therefore, the
charging data-based SoH estimation methods can be further
divided into the CC charging data-based and the CV charging
data-based methods in terms of the utilized data.

B. Related Works

For the CC charging data, the incremental capacity (IC)
and the differential voltage (DV) analyses are two widely
used techniques [10]–[12]. These two techniques transform
the plateau regions in the voltage curve into the identifi-
able peaks/valleys in the IC/DV curves by differentiating
the capacity/voltage with respect to the voltage/capacity. The
aging-sensitive peak/valley information, such as corresponding
location, magnitude, width, and area, is extracted as the FoI to
correlate with the battery capacity loss. It should be noted that
this kind of technique is sensitive to the previous discharging
process, that is, the initial charging point [13], [14]. The SoH
estimation performance may deteriorate when the battery is
charged from the nonzero state-of-charge (SoC).
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Fig. 1. Schematic representation of different charging protocols. (a) CC–CV.
(b) CC–CV–CC. (c) CP–CV. (d) MC-CCV.

Besides the CC phase, the existing research has revealed
that the electrochemical reactions occurring during the CV
phase also demonstrate a remarkable influence on the battery
SoH [15]–[17]. In addition, since the CV phase begins when
the battery terminal voltage reaches the predetermined Vtr,
as shown in Fig. 1, the CV phase is more robust to the
uncertain initial charging state in comparison to the CC phase.
Extensive studies have been conducted to extract the FoI from
the CV charging data to reflect the actual battery capacity.
For example, the CV charging time (TCV) is found to increase
monotonically with respect to the degrading capacity and is
considered as an effective FoI in the literature to determine
the battery SoH [18], [19]. Furthermore, the CV–CC time ratio
was proposed in [20] as an FoI for the qualitative degradation
analysis. The relative energy [21], the current interval, and
the charging capacity [22] measured at CV phase were also
considered as effective FoIs for aging investigation and SoH
estimation. Besides, the kinetic behavior of the CV charging
current is also useful for the battery SoH estimation. Specif-
ically, constructing an accurate and efficient model, as well
as selecting the aging-sensitive model parameters are two
critical aspects to extract the FoI from the CV charging current
curve. In [21], a simple exponential-based empirical function
was employed to simulate the charging current under the CV
scenario, and a linear correlation between the capacity loss and
one function coefficient was discovered to represent the battery
SoH. Similarly, Wang et al. [23] employed the RC network-
based equivalent circuit model (ECM) to characterize the CV
charging current and selected one model parameter to indicate
the battery capacity degradation. In our previous work, the
expression of the current time constant was derived based on
the conventional ECM and was correlated with the normalized
battery capacity [24]. Dingari et al. [25] developed a reduced-
order electrochemical model to describe the evolution of
current under the CV charging scenario and further proposed a
coupled SoC and SoH estimation method based on the CC–CV
charging data.

It should be noted that the model parameters in the
above literature are mostly determined by the nonlinear least-
squares (NLS) method. The NLS method starts at the pre-
determined initial values and searches the model parameters
to best fit the estimated current to the measured values. One
of the limitations of this kind of method lies in the fact that
the identified parameters are sensitive to the predetermined
initial and boundary conditions [26], [27]. If inappropriate
initial and/or boundary values are selected, there is a high
possibility that the cost function will converge to the local
minimum. Furthermore, this method is computationally exten-
sive, especially when the initial values are far from the
optimal values [28], [29]. By contrast, the analytical method
is relatively simple and has been utilized to identify the
RC network parameters in the conventional ECM. Based on
the voltage relaxation characteristics, Hentunen et al. [28]
directly calculated the RC elements using the measured data in
predefined windows. Furthermore, the relaxation dataset was
split into the logarithmic subsets in [27], and only one RC
element was fit based on each subset, with the initial values
that were analytically derived from the voltage signal.

In order to accurately characterize the CV charging current,
a resistor–inductor (RL) network-based ECM was proposed in
our previous work, and the simplified second-order model was
further developed to reduce the parameterization effort [30].
With the simplified second-order model, this article develops
an online SoH estimation method based on the decoupled
dynamics of the CV charging current. The main contributions
of this article are: 1) a parameter identification method is
proposed based on the decoupled dynamic characteristics of
the CV charging current; 2) the time constant of the decoupled
CV charging current is selected to correlate with the actual
battery capacity; and 3) two battery degradation datasets based
on batteries with different electrode materials are adopted to
validate the effectiveness and the generality of the proposed
method.

II. PROPOSED PARAMETER IDENTIFICATION METHOD

In our previous work, an RL network-based ECM was devel-
oped to characterize the dynamic behavior of the CV charging
current, and a model containing two parallel-connected RL
networks was found to be a preferred choice, considering
both the model accuracy and the parameterization effort.
In this study, this second-order RL network-based ECM is
employed as the basis for the battery SoH estimation. A brief
introduction of the adopted model is provided as follows, and
a more detailed description can be referred to [30].

The architecture of the employed model is shown in the top
of Fig. 2, and the detailed expressions of each branch current
are [30]⎧⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎩

Ik(ti) = Ik(0)e− ti
τk + Vt − VOC

Rk

�
1 − e− ti

τk

�

i = 1, 2, . . . , N
2�

k=1

Ik(ti ) = I (ti )

(1)

where ti denotes the CV charging time, t1 = 0 denotes the
start of the CV charging process, N denotes the data size,
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Fig. 2. Schematic representation of employed ECM, CV charging current,
and corresponding decoupled currents.

ti+1–ti denotes the sampling interval (Ts), Vt denotes the
battery terminal voltage, VOC denotes the open circuit voltage,
I denotes the load current (the positive value and the negative
value represent charging and discharging, respectively), Ik(ti)
(k = 1 and 2) denotes the branch current through each RL
network, Rk , Lk , and τk denote the resistance, the inductance,
and the time constant for each RL network, respectively, and
τk = Lk /Rk . Specifically, τ1 and τ2 represent the fast-dynamic
and slow-dynamic characteristics of the CV charging current,
respectively, that is, τ1 < τ2.

It can be observed from (1) that the CV charging current
can be decoupled into two parts with different scales of
time constants, as schematically shown in Fig. 2. In addition,
the (Vt − VOC)(1 − e−(ti /τk ))/Rk part in (1) can be negligible
because of the relatively low (Vt–Voc) and high Rk [30].
Therewithal, (1) can be simplified as

I (ti ) = I1(ti ) + I2(ti) = I1(0)e− ti
τ1 + I2(0)e− ti

τ2 (2)

where I1(ti) and I2(ti ) denote the fast-dynamic and the slow-
dynamic currents, respectively.

Assuming I1(ti ) reduces to a negligible value at ts, as shown
in Fig. 2, the measured CV charging current mainly contains
I2(ti ) after ts, as

I (ti ) = I2(ti) = I2(0)e− ti
τ2 , ti ≥ ts. (3)

The differential expression of (3) is

I (ti ) − I (ti − L)

L
≈ I �(ti) = − I2(0)

τ2
e− ti

τ2 = − I (ti )

τ2
(4)

where L denotes a certain length of the sampling interval.
Based on (4), the time constant of the slow-dynamic current

can be obtained by

τ2,est = − I (ti,2)

I �(ti,2)
, ti,2 ≥ ts (5)

where τ2,est denotes the estimated τ2.
Then, I2(0) can be calculated by substituting τ2,est into (3),

and the estimated fast-dynamic current (I1,est) can be obtained

Fig. 3. Example of the slow-dynamic current estimation result: the parameter
identification is exemplarily performed based on the data of the NCA battery.

by subtracting the estimated slow-dynamic current (I2,est) from
the measured current. Subsequently, the time constant of the
fast-dynamic current can be obtained by

τ1,est = − ti,1
ln[I1,est(ti,1)/I1,est(0)] , ti,1 < ts (6)

where τ1,est denotes the estimated τ1. In this study, ti,1 is
determined as the time when the estimated fast-dynamic
current decreases to 36.8% of the initial value.

It should be noted from (5) that τ2,est is closely related to ti,2.
When the selected ti,2 is far less than ts, τ2,est is generally
lower than the actual value, leading to a relatively significant
difference between the estimated and the measured currents,
especially at the end of the CV charging process, which is
exemplarily shown as the dashed line in Fig. 3. In contrast,
when the selected ti,2 is much larger than ts, the identified
model parameters cannot effectively reflect the fast-dynamic
characteristic of the measured current, and I2,est may above the
measured current in the former part of the CV charging process
(the dotted-dashed line in Fig. 3), resulting in the negative
I1,est, which has no physical meaning. Hence, it is critical to
determine an appropriate ti,2. In this study, the selected ti,2
(ti,2,n) is decreased from a predefined value (T0) at a certain
time interval (�T ), as

ti,2,n = T0 − n�T, T0 ≤ TCV and �T ≥ Ts. (7)

Then, the unknown model parameters are identified based
on the charging data with different ti,2s, and the parameters
corresponding to the lowest root-mean-square error (RMSE)
between the estimated and the measured currents are selected
as the final model parameter. The objective function can be
expressed as

θ̂n = arg min[RMSE(θn)] (8)

where θn denotes the unknown model parameters correspond-
ing to ti,2,n , and θn = [τ1,est,n, τ2,est,n , I1,est,n(0), I2,est,n(0)].
RMSE(θn) can be further expressed as

RMSE(θn) =
	

� 1

N

N�
i=1

[Imea(ti ) − Iest(ti , θn)]2 (9)

where Imea(·) and Iest(·) denote the measured and the estimated
currents, respectively.

The overall parameter identification framework based on the
decoupled dynamic characteristic of the CV charging current
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Fig. 4. Proposed parameter identification scheme.

is presented in Fig. 4. The time-current series, denoted as
[ti , Imea(ti )], are recorded in the storage component as soon
as the charging mode is transformed to the CV phase, and
the proposed parameterization method is conducted when the
charging process is completed. The proposed parameter iden-
tification scheme mainly includes the following three steps.

Step 1: Identifying the slow-dynamic model parameters.
First of all, τ2,est,n is estimated according to (5). Then,
I2,est,n(0) is calculated by substituting τ2,est,n into (3). After-
ward, the slow-dynamic current is estimated based on the
preliminarily identified model parameters.

Step 2: Identifying the fast-dynamic model parameters. I1,est

is calculated by subtracting I2,est from Imea. If the minimum
value of I1,est is negative, a new set of slow-dynamic model
parameters corresponding to ti,2,n+1 should be identified.
Otherwise, τ1,est,n can be obtained according to (6).

Step 3: Determining the model parameters. The RMSE
between the estimated and the measured currents is calculated
for each ti,2,n . The optimal model parameters are determined
by searching for the lowest RMSE.

III. FOI SELECTION

As reported, the battery SoH, especially the state of the
capacity degradation, can be effectively calculated by the
dynamic characteristic of the CV charging current [24].
Consequently, the battery SoH in this study is defined
as

SoH = Capactual

Capnominal
× 100% (10)

where Capactual and Capnominal denote the actual battery capac-
ity and the nominal battery capacity, respectively.

Based on the aforementioned parameter identification tech-
nique, the dynamic characteristics of the decoupled CV charg-
ing currents for the new and aged batteries are investigated
in this section, and the effective FoIs are extracted to cor-
relate with the battery capacity loss. Specifically, the CV
charging current of the lithium iron phosphate (LFP) and the
nickel cobalt aluminum oxide (NCA) batteries are exemplarily
employed to make a qualitative analysis.

For the tested LFP battery, the measured charging cur-
rents and the corresponding decoupled currents are plotted
in Fig. 5(a), (c), and (e), respectively. It can be observed
from Fig. 5(a) that the variation rate of the current profile
decreases as the battery ages. Similarly, compared to the new
state battery, the fast-dynamic and the slow-dynamic currents
of the aged state battery need more time to decrease to the
steady state, as shown in Fig. 5(c) and (e). For the decoupled
current, the corresponding time constant is represented by the
intersection of the tangent line of the current curve at the initial
point and the time axis. It can be observed from Fig. 5(c)
and (e) that for both decoupled currents, the time constants
corresponding to the aged battery are generally larger than the
time constants of the new battery.

For the NCA battery, the CV charging current, the decou-
pled fast-dynamic and slow-dynamic parts at new and aged
states are demonstrated in Fig. 5(b), (d), and (f), respectively.
Represented in Fig. 5(d) and (f), the proportion of the fast-
dynamic current to the overall current is negligible for a
new battery and increases significantly for an aged battery.
In addition, it can be seen from Fig. 5(f) that although the
initial value of the slow-dynamic current for the aged battery
is lower than the value for the new battery, the slow-dynamic
current still requires a longer convergence time, which means
a larger time constant for the corresponding current curve,
that is, τ2,aged > τ2,new. Based on the above analysis, we can
conclude that compared with the new battery, the CV charging
current for the aged battery demonstrates a faster rate of
decrease in the initial stage. After a certain amount of time,
when the influence of the fast-dynamic current can be omitted,
the slow-dynamic current dominates the charging current, and
the variation rate of the current curve for the aged battery
decreases, leading to a longer CV charging time, as shown in
Fig. 5(b).

Hence, the time constant of the decoupled current can be
considered as the effective FoI to reflect the battery capacity
fade, and the actual battery capacity can be estimated accord-
ing to the evolution of the corresponding time constant.

IV. VALIDATION AND DISCUSSION

A. Experimental Setup and Test Procedure

Two types of batteries are employed in this study, that is,
four 2500-mAh 26650 batteries (numbered from #1 to #4) with
an LFP-positive electrode, and six 4800-mAh 21700 batteries
(numbered from #5 to #10) with NCA cathode material.
Specifically, all four LFP batteries were placed in an air-
conditioned room (25 ± 2 ◦C) and were charged/discharged
by an eight-channel Arbin BT2000 battery cycler. All NCA
batteries were placed in a thermal chamber (GD-4015) at
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Fig. 5. Representative CV charging currents and decoupled currents at new and aged states. (a) Measured currents of battery #1. (b) Measured currents
of battery #5. (c) Fast-dynamic currents of battery #1. (d) Fast-dynamic currents of battery #5. (e) Slow-dynamic currents of battery #1. (f) Slow-dynamic
currents of battery #5.

Fig. 6. Battery test procedure.

25 ◦C, and the tests were conducted by a 16-channel
NBT5V20AC16-T battery cycler.

In this study, all the tested batteries were cycled under
100% depth of discharge, the cutoff current under the CV
charging scenario was 0.05 C for both types of batteries,
the CC–CV transition voltages were 3.65 and 4.2 V for the
LFP and the NCA batteries, respectively, and the discharge
cutoff voltages were 2.0 and 2.5 V for the LFP and the
NCA batteries, respectively. The detailed test procedures for
the two categories of batteries are shown in Fig. 6, where

TABLE I

BENCHMARK MODEL PARAMETERS

Icha and Idis denote the C-rates of charging and discharging
currents, respectively, and Tr denotes the rest period after
the charge/discharge process. The current, battery terminal
voltage, temperature, and accumulative capacity were recorded
with the sampling rate of 1 Hz during the tests. In this
study, the actual battery capacity is the discharged capacity
measured from the characterization test, and all the single
battery analyses are based on the test data of batteries #1 (LFP)
and #5 (NCA) unless otherwise notified.

B. Parameter Identification Performance Analysis

1) Simulation Verification: The simulation study is per-
formed in MATLAB to preliminarily assess the proposed para-
meter identification method from the theoretical perspective.
The detailed simulation and benchmark model parameters are
listed in Table I, where tsim represents the simulation time,
I1,ref (0), I2,ref (0), τ1,ref , and τ2,ref represent the benchmark
values of I1(0), I2(0), τ1, and τ2, respectively. Specifically,
the parameters in Case #1 and Case #2 are set to refer to the
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Fig. 7. Evolution of RMSE and tcom with respect to time interval.
(a) Case #1. (b) Case #2.

actual parameters of the employed LFP and NCA batteries,
respectively. The random noise with a standard deviation of
5 mA is utilized to simulate the actual measurement noise.

It is evident from (7) that the determination of ti,2,n

is closely related to �T , thus a parametric study is con-
ducted to investigate the influence of �T on the simula-
tion results. Specifically, ti,2,n is decreased at different �T s
(1, 5, 10, . . . , 45), and the corresponding simulation results
are plotted in Fig. 7. The RMSE between the estimated
and benchmark currents is used to measure the parameter
identification accuracy and to quantify the computational
cost, each identification algorithm is conducted (on a 3-GHz
processor and with 16-GB RAM) repeatedly for five times to
obtain the average computational time (tcom). Generally, the
reduced �T corresponds to the enhanced resolution of ti,2,n,
leading to the overall decreasing RMSE and increasing tcom,
as shown in Fig. 7. Moreover, it should be noted that the
identification algorithm implemented in Case #1 presents a
higher computational speed than in Case #2, especially with
lower �T , which can be attributed to the smaller data size.
Hence, considering both the identification accuracy and the
computational cost, �T in Case #1 and Case #2 are set
as 1 and 5 s, respectively, for the subsequent simulation study.

To further evaluate the proposed decoupled current-based
parameter identification method, the NLS method and the
particle swarm optimization (PSO) method, which have been
widely utilized in [31], are also conducted to make a com-
parison in terms of the computational cost and the estimation
accuracy. Specifically, the initial condition of the NLS method
is set as: I0 = I (0)/2 A, τ1 = 100 s, τ2 = 1000 s, the lower
and upper bounds of the PSO method are [0 0 0] and [I (0)/2
Inf Inf], respectively, and the maximum number of iterations
(niter) is set as 50 in both simulation cases. The comparative
results are listed in Table II. As can be seen, the proposed
method yields a slightly larger error than the NLS method,
while the corresponding computational efficiency is signif-
icantly improved, especially compared to the PSO method.

TABLE II

COMPARISON OF SIMULATION RESULTS BASED ON THE CONVENTIONAL
AND PROPOSED METHODS

Fig. 8. Estimation results and absolute values of errors of CV charging
current at different aging states. (a) Estimation results for LFP battery.
(b) Estimation results for NCA battery. (c) Absolute value of error for LFP
battery. (d) Absolute value of error for NCA battery.

It should be noted that the performance of the PSO method
is closely dependent on the predefined niter. The reduced niter

can effectively improve the computational speed, but at the
expense of the degrading identification accuracy.

2) Experimental Verification: According to the aforemen-
tioned discussion, �T s for the LFP and the NCA batteries
are determined as 1 and 5 s, respectively. Based on the
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TABLE III

COMPARISON OF EXPERIMENTAL RESULTS BASED ON THE
CONVENTIONAL AND PROPOSED METHODS

employed �T , the estimated currents and the corresponding
absolute values of errors for both tested batteries at different
aging states are plotted in Fig. 8. As can be seen, the estimated
currents can generally track the measurements at different
aging states, and the absolute values of errors are within
80 and 50 mA for the LFP and the NCA batteries, respectively,
suggesting the feasibility and the universality of the proposed
parameter identification method.

Besides the proposed method, the NLS and PSO methods
are also conducted based on the test data for comparison
purposes. Specifically, the initial and boundary conditions
of the two conventional methods are consistent with the
values set in the simulation study. The comparative results are
listed in Table III. Similar to the simulation results, the PSO
shows the overall largest tcom and RMSE among the utilized
three methods. With respect to the NLS method, the lowest
tcom corresponds to identifying the model parameters for
the LFP battery at 86% SoH and the NCA battery at 87%
SoH, respectively. This is mostly due to the fact that the
predetermined initial values of model parameters are close
to the corresponding optimal values, which can reduce the
searching time. As observed in Table III, the estimation results
of the NCA battery generally present a higher accuracy, that
is, the lower values of RMSE, than the results of the LFP
battery, especially based on the parameters identified through
the NLS method. This phenomenon is supposed to be caused
by the inappropriate initial and/or boundary values, as well
as the noisy measurements. As can be seen from Fig. 8, the
measured current of the LFP battery fluctuates more heavily
than the measurements of the NCA battery. It can also be
discovered from Table III that, compared to the NLS method,
the overall RMSEs of the proposed method are increased by
approximately 1.55% and 12.50% for the LFP and the NCA
batteries, respectively, but the overall tcoms of the proposed
method are reduced by approximately 54.0% and 55.2% for
the LFP and the NCA batteries, respectively. Hence, it can be
concluded that the proposed method demonstrates the reduced
computational cost with satisfactory parameter identification
accuracy, which is consistent with the simulation results.

C. Correlation Analysis

The relationship between the time constant and the capacity
for battery #1 (LFP) and #5 (NCA) is demonstrated in Fig. 9.

Fig. 9. Evolution of capacity with respect to the time constant of decoupled
current. (a) τ1 for battery #1. (b) τ2 for battery #1. (c) τ1 for battery #5. (d) τ2
for battery #5.

It can be observed that the overall battery capacity decreases
with the increasing time constant.

For the employed LFP battery, the battery capacity
decreases linearly with respect to the time constants of two
decoupled currents, as shown in Fig. 9(a) and (b). It should
be noted that the data points corresponding to the new battery
are deviated from the trend lines, as marked by the red
circles in Fig. 9(a) and (b), which may be attributed to the
inactive electrode at the beginning stage of life. The Pearson
product–moment correlation coefficients (rx,y) are displayed
in Fig. 9(a) and (b) to quantify the correlation between the
battery capacity and the time constant. rx,y can be calculated
by

rx,y =
�N

i=1 (xi − x̄)(yi − ȳ)�N
i=1 (xi − x̄)2

�N
i=1 (yi − ȳ)2

(11)

where x and y represent the selected time constant and the
battery capacity, respectively, and x̄ and ȳ denote mean values
of x and y, respectively. Specifically, the data corresponding
to the new battery are not considered in this study.

The correlation coefficients in Fig. 9(a) and (b) indicate that
the time constants of two decoupled currents have a negative
correlation with the battery capacity. Furthermore, compared
to τ2, τ1 demonstrates a stronger correlation with the battery
capacity. Consequently, τ1 is selected as the FoI for the tested
LFP batteries, and the linear regression function, expressed
as (12), is adopted to characterize the correlation according
to the variation trend, where Capest denotes the estimated
battery capacity. Specifically, the normalized FoIs are used
to reduce the influence of the battery inconsistency on the
SoH estimation [32]. The RMSE of the capacity estimation is
0.0193 Ah, that is, 0.77% of the nominal capacity, indicating
the feasibility of the fit correlation

Capest = −0.1653τ1,est + 2.6638. (12)

For the tested NCA battery, nonlinear relationships between
the battery capacity and the time constants are presented
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TABLE IV

ESTIMATION ERROR OF (13)

in Fig. 9(c) and (d). It can be observed that τ2 presents a
significantly stronger correlation with the battery capacity,
in comparison to τ1. Specifically, two stages of the variation
trend can be distinguished for the capacity degradation as a
function of τ2: 1) a faster capacity degradation rate at the
beginning of life and 2) a slowly and linearly decreasing trend
afterward. Hence, the above correlation can be mathematically
expressed as

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

Capest = 8.6383τ 2
2,est − 18.9011τ2,est + 14.7192

τ2,est ≤ 1.094

Capest = −0.4739τ2,est + 4.8617

τ2,est > 1.094.

(13)

The RMSEs computed based on the test data of battery #5
are summarized in Table IV to preliminarily evaluate the
fitting performance of (13). As can be seen, the fit regression
function can estimate the battery capacity with an acceptable
overall RMSE of 0.0541 Ah. Besides, the estimation error
calculated when τ2,est ≤ 1.094 is larger than the error when
τ2,est > 1.094, which may be attributed to the lack of fitting
samples in the first stage.

D. SoH Estimation Performance Analysis

Based on the aforementioned discussion, τ1 and τ2 are
selected as FoIs for the tested LFP and the NCA batteries,
respectively. To investigate the influence of the parameter
identification on the subsequent SoH estimation, the proposed
parameter identification and the NLS methods are both per-
formed to extract the decoupled time constants. Furthermore,
TCV and the coefficient B of the empirical function, as two
other commonly used FoIs based on the CV charging data,
are also adopted to make a comparison [18], [21].

The evolutions of the capacity with respect to the normal-
ized τ1_pro, τ1_NLS, TCV, and 1/B for four LFP batteries are plot-
ted in Fig. 10, where τk_pro and τk_NLS (k = 1 or 2) in this study
denote the decoupled time constant identified through and the
proposed and the NLS methods, respectively. Specifically, the
reciprocal of B (1/B) is employed to make a comparison since
it can be considered as the time constant of the CV charging
current curve. The solid lines in Fig. 10 represent the reference
regression functions based on the test data of battery #1, which
can be expressed as (12), (14), (15), and (16), respectively,

Capest = −0.1627τ1_NLS + 2.6670 (14)

Capest = −0.3596TCV + 2.8693 (15)

Capest = −0.3873(1/B) + 2.8958. (16)

In addition, the detailed RMSEs of the estimated capacities
and SoHs are listed in Table IV for the quantitative evaluation.

Fig. 10. Evolutions of capacity with respect to different FoIs for four LFP
batteries. (a) τ1_pro. (b) τ1_NLS. (c) TCV. (d) 1/B .

TABLE V

RMSES OF ESTIMATION RESULTS FOR FOUR LFP
BATTERIES BY DIFFERENT FOIS

It can be observed that the overall results from the LFP battery
show satisfactory estimation accuracy (the mean RMSEs of
all the SoH estimation results are within 1.5%). It can be
observed from Fig. 10 and Table V that the actual battery
capacity estimated based on τ1_NLS demonstrates a slightly
superior accuracy compared to the estimation based on τ1_pro,
which is supposed to be brought by the more precise para-
meter identification as discussed in Section IV-B. Moreover,
compared with the mean RMSEs corresponding to TCV and
1/B , the mean RMSE corresponding to τ1_pro is reduced by
approximately 28.7% and 11.8%, respectively, suggesting the
feasibility of the developed reference correlation.

Six groups of NCA battery aging data are adopted to
further validate the universality of the proposed method. The
actual capacities of all six batteries are plotted as functions
of τ2_pro, τ2_NLS, TCV, and 1/B in Fig. 11(a)–(d), respectively.
In Fig. 11(a)–(d), battery #5 is considered as the reference
battery, and the reference correlations are mathematically
expressed as (13), (17), (18), and (19), respectively,

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

Capest = 16.6334τ 2
2_NLS − 36.8128τ2_NLS + 24.7485

τ2_NLS ≤ 1.107

Capest = −0.5287τ2_NLS + 4.9349

τ2_NLS > 1.107

(17)

Capest = −1.7782TCV + 6.3396 (18)

Capest = −7.2032(1/B)2 + 15.0887(1/B) − 3.3522. (19)
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Fig. 11. Evolutions of capacity with respect to different FoIs for six NCA
batteries. (a) τ2_pro. (b) τ2_NLS. (c) TCV. (d) 1/B .

TABLE VI

RMSES OF ESTIMATION RESULTS FOR SIX NCA BATTERIES

BY DIFFERENT FOIS

It should be noted from Fig. 11(b) that unlike the results of
the LFP battery, the estimated capacity of battery #10 cannot
track the reference values, which are marked as the red dots.
By comparison, the estimation performance is significantly
improved when the initial condition of battery #10 is reset
as: I0 = I (0)/2 A, τ1 = 500 s, τ2 = 2000 s, where the
light blue circles in Fig. 11(b) represent the corresponding
reference capacity. This indicates the sensitivity of the SoH
estimation to the predefined initial condition when the FoI is
identified by the NLS method. In addition, it can be concluded
from Fig. 11 that the capacities estimated by the τ2_pro-based
reference correlation yields a similar variation trend of the
actual capacities for all six batteries, demonstrating the best
performance among the three FoIs. By contrast, there exists
obvious deviations between the actual and the estimated capac-
ities based on the coefficient 1/B , especially when 1/B is
approximately lower than 0.8. Furthermore, the corresponding
RMSEs of the estimation results are summarized in Table VI.
Specifically, the estimation error corresponding to τ2_NLS of
battery #10 is based on the modified initial condition. It can
be observed that the capacities estimated based on τ2_pro

yield the lowest RMSEs (the mean RMSEs are reduced by
approximately 28.5% and 54.1%), in comparison with the
results based on TCV and 1/B , indicating the superiority of
the proposed method.

V. CONCLUSION

A novel SoH estimation method based on the decoupled
dynamic characteristic of the CV charging current is developed
in this study. Two types of batteries are adopted under multiple
tests to validate the feasibility and the universality of the
proposed method. According to the simplified second-order
RL network-based ECM, a parameter identification method is
proposed based on the decoupled current behavior. Compared
with the conventional NLS method, the proposed dynamic-
decoupled method demonstrates a lower computational burden
and satisfactory identification accuracy. Based on the correla-
tion analysis, τ1 and τ2 are selected as FoIs for the tested LFP
and NCA batteries, respectively. The corresponding RMSEs of
the estimation results by the reference correlation are within
0.0269 (1.08% of the nominal capacity) and 0.0870 Ah (1.81%
of the nominal capacity) for the two employed batteries.
Furthermore, the selected FoI demonstrates the best SoH
estimation performance in comparison to TCV, and 1/B , as two
other widely used FoIs extracted from the CV charging data.

It is worth noting that although the normalized FoIs have
been utilized to reduce the influence of the battery incon-
sistency on the SoH estimation, there still exists obvious
differences between the estimated and the actual battery capac-
ity, such as the estimation results for battery #7. This limits
the applicability of the reference correlation. Hence, a more
effective inconsistency reduction technique will be explored
in future work to improve the universality of the proposed
method.
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