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Abstract—In this paper, an optimal charging strategy for lithium-
ion batteries is proposed to minimize the charging loss. In order to 
reach this target, a one-RC electric model is employed to model the 
loss for the battery, and an efficiency map is measured for the 
charger considering different charging currents and voltages. 
Dynamic programming (DP) algorithm is applied to determine the 
optimal charging current profiles for minimizing the losses of 
battery and charger separately and collectively. Experiment results 
prove that the proposed method is more efficient compared with 
constant current (CC) charging method without influencing the 
charging time. 

I. INTRODUCTION 

The development of electric vehicles (EVs) and plug-in 
hybrid electric vehicles (PHEVs) have been greatly promoted 
due to limited fossil fuel and environmental issues. The demand 
of rechargeable batteries, which serve as the key energy storage 
element in EVs and PHEVs, is expanding correspondingly. 
Among all the types of rechargeable batteries, lithium-ion 
batteries dominate the market because of its high power density, 
high energy density, long life cycle, and free of memory effect 
[1, 2]. Abundant researches have been carried out for lithium-ion 
batteries, including battery status estimation [2], which mainly 
consists of battery state of charge (SoC) [3], state of health (SoH) 
[4], and state of function (SoF) estimation, and battery charge 
strategy research [5]. The traditional charging scheme for 
lithium-ion batteries is constant-current constant-voltage (CCCV) 
method. This method consists of two stages, i.e., a constant-
current (CC) charging stage and a constant-voltage (CV) stage. 
During the CC mode, a constant charging current is applied to 
the terminal of the battery until its terminal voltage reaches a 
predetermined maximum value. Then, the charging process is 
transferred into CV charging mode. During this mode, the 
battery terminal voltage remains unchanged and the charging 
current will decrease gradually until a cut-off current threshold 
is reached. This charging method is easy to implement due to its 
simplicity. However, it does not consider the charging loss, and 
the charging efficiency may not be high. Since the battery 
internal resistance varies with battery SoC, we believed that the 
varied charging current can possibly decrease the charging loss 
without shortening the battery life, thereby improving charging 
efficiency.  

Many charging strategies have been introduced to improve 
the charging efficiency, shorten the charging time or extend 
battery life. In [6] , an ant algorithm-based charging pattern 
strategy is proposed to reduce charging time and extend battery 
life. It takes advantage of the positive feedback and distributed 
computation of the ant colony system. However, the optimal 
charging solution takes relatively long time to obtain, and it does 
not have a physical model to work with. In [7], a fuzzy 

controlled active SoC controller is applied to substitute the CV 
charging mode. However, the implementation of these 
techniques is too complex. In [8, 9], pulse current charging is 
proposed with respect to electrochemistry reaction which allows 
lithium ions to diffuse more evenly throughout the battery, and 
thus alleviate polarization. In this scenario, the rising time, pulse 
amplitude and frequency should be well-tuned in order to have 
the best performance, and they are different among various 
kinds of batteries. In [10], temperature is considered as a state, 
and by manipulating weight terms in cost functions, optimal 
charging profiles could be determined with different purposes, 
including final cell temperature, final SoC and energy loss. By 
rearranging the charging scheme, this method could remove 
warm-up stage which is necessary in cold start, thus saving the 
energy usage. However, it requires more accurate estimation at 
the end-stage where current is the largest which might lead to 
safety concerns if fully charge is required. In [11], an optimal 
charging strategy is proposed based on nonlinear model 
predictive control techniques to charge the lithium-ion battery in 
a fast way, while guaranteeing safety throughout the battery life. 
It concerns the safety, temperature increment, and mechanical 
stress of the battery, however, it does not take into account of 
the charger losses to optimize the total charging efficiency. In 
[12], a model predictive control framework is introduced to 
optimize the charging current considering the battery 
temperature. A genetic algorithm is employed to optimize the 
charging current profile under multi objectives. In [13], a 
dynamic optimization method to maximize the energy storage 
for the lithium-ion battery is presented. However, it does not 
detail the analysis of obtaining the charging current profile. In 
[14], a multi-objective optimal charging problem for two types 
of Li-ion batteries is formulated to optimally tradeoff the 
conflict between the charging time and energy loss. In [15], two 
varied charged current profiles are employed to illustrate better 
charging efficiency and capacity retention. In [16], the optimal 
charging current for the lithium-ion battery is traded off between 
cycle life, time-to-charge, energy losses and the temperature 
rise. 

Until now, there has been little work done to improve the 
overall efficiency including both battery efficiency and charger 
efficiency. For a lithium-ion battery, an equivalent electric 
circuit model [3] is easy to build which can simulate the battery 
performance with high precision. In [17], an improved model for 
lithium-ion batteries is proposed that varies the cell resistance 
and electrode over-potential with respect to the temperature. 
These models can guarantee the effectiveness of simulating the 
battery static and dynamic performances. Given the battery 
model, the available charging time, initial SoC, and the target 
SoC, the charging strategy can be optimized to decrease the 
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charging loss. For a battery charger, its efficiency changes with 
different voltage and current, and can be measured easily. Hence, 
the optimal charging scheme which minimizes the power loss of 
the charger can also be calculated. Finally, an overall charging 
loss minimization can be achieved by considering the loss of the 
battery and the charger together. This is the main motivation of 
this paper. 

In order to realize the mentioned target, a battery model 
should be built first to obtain the relationship between charging 
loss and charging current. In this paper, an equivalent circuit 
model [4, 18], which has been widely used for battery state 
estimations, is introduced to describe the battery static and 
dynamic performance. Based on the built model, the charging 
loss can be easily calculated with respect to battery current. 
Then, dynamic programming (DP) [19, 20] is applied to find the 
optimal charging current profile. DP is a method which converts 
complex problems into multiple sub-problems. The cost of each 
sub-problem is computed, recorded, and looked up when the 
same step is encountered again in computation. Finally, DP 
selects the optimal solution by comparing all existing steps. The 
advantage of this method is that it can find the optimal solution 
even for a nonlinear system without too much calculation labor. 
Besides, an optimal charging current profile for the charger is 
achieved by DP through relating charger loss with output 
voltage and current. Finally, an overall optimal charging scheme 
is obtained by considering both losses. Experiment results prove 
that the proposed strategy can dramatically improve the charging 
efficiency. 

II. CHARGING LOSS MODELING 

In order to minimize the charging loss, loss models for 
battery and charger should be built properly. Here, an equivalent 
circuit model is introduced to analyze the charging loss for the 
battery, an efficiency map is measured for the charger at 
different output voltage and current levels, and experiment 
results validate the effectiveness of the models. 

A. Lithium-ion battery cell modeling 

A lithium-ion polymer pouch cell, as shown in Fig. 1, is 
tested using Arbin battery test equipment at normal room 
temperature. The basic specifications of the battery pouch cell 
are listed in Table I. The rated capacity of the battery is 40 
Ampere-hour (Ah), and its nominal voltage is 3.7V. 

The equivalent circuit model [3, 21] for the battery is shown 
in Fig. 2, which consists of an open circuit voltage (OCV) 
source ocvU , a polarized resistor pR  which is in parallel with a 

capacitor pC , and a resistor 0R . ocvU  characterizes the nonlinear 

relationship between OCV with battery SoC. pR  and pC
 

network models the transient response due to polarization and 
diffusion effect, and 0R  describes the immediate voltage drop 
after current excitation. 

In order to build the battery model, some particular 
experiments need to be conducted to capture the battery static 
and dynamic characteristics, which includes static capacity test, 
OCV test, hybrid pulse power characterization (HPPC) test and 
drive cycle test [3]. The whole test process for modeling the 
battery and validating the built model is shown Fig. 3. The 
function of the static capacity test is to test the battery capacity 
with recommended charging current, i.e., 0.5C, where C is the 

value of the current with which the battery can be discharged for 
1 hour. The OCV test is to obtain the battery static voltage with 
different SoC when the battery is not connected to the circuit. 
The OCV tests are recorded with a step of 10% SoC. As shown 
in Fig. 4, The HPPC test is applied with a step of 2% SoC to 
characterize the battery dynamic performance. The main 
purpose of the drive cycle test is to compare the actual battery 
terminal voltage with the model output to verify its 
effectiveness. In this paper, urban dynamometer driving 
schedule (UDDS) tests are applied to verify the model. 

The battery OCV curve is shown in Fig. 5, from which we 
can see the charging OCV and discharge OCV range from 3.40V 
to 4.18V, and there exists a hysteresis between them. 0R , pR , 

and their sum value are shown in Fig. 7. Their sum value varies 
from 3.4mΩ to 1.9mΩ when SoC ranges from 0 to 1. The 
variation of pC  with SoC is shown in Fig. 6 and it varies from 

35230F to 18610F. Ten consecutive UDDS drive cycle tests are 
applied to verify the correctness of the model output. Fig. 8 
compares the measured battery terminal voltage and model 
output, and shows that the difference is less than 40mV. Thus it 
proves the model can simulate the battery performance with 
acceptable accuracy. 

 

 

Table I Specifications of the Battery Cell  

Material Lithium-ion polymer 

Capacity (Nominal at C/2) 40Ah 

Nominal voltage 3.7V 

Lower limit voltage 2.7V 
Upper limit voltage 4.2V 

 
Fig. 1.  The tested pouch cell. 

 
Fig. 2.  Equivalent circuit model for lithium-ion battery. 
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B. Lithium-ion battery loss 

Given the built model, the power loss of the two energy 
dissipation elements, i.e., 0R  and pR , can be calculated 

accordingly, 

 
2 2

, 0loss cell p p LP i R i R 
  (1) 

where pi  is the current of pR , Li  denotes the current flowing 

through 0R , and ,loss cellP  is the power loss of the cell. Since 0R  

and pR  both vary with battery SoC, we can get the total energy 

loss during the charge process,  
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, 00

ft

cell loss p p LE i t R SoC i t R SoC dt      (2) 

 

 

 

where ft  is the total charging time, and ,cell lossE  is the energy 

loss of the cell. During the charging process, SoC variation can 
be calculated, 

 0 0

1 f

f

t

t L
b

SoC SoC i dt
C

    . (3) 

Based on (2) and (3), the battery charging losses can be 
calculated when charging the battery with a constant current.  

Fig. 9 shows the calculated losses and measured losses when 
the battery is charged using constant current of 0.1C to 0.5C. It 
shows that the calculated losses occupy around 80% of the 
experimental losses. The remaining part of the losses may come 
from heat generation from electrochemical reaction or 
temperature change, which is beyond the scope of the electric 
model. In this paper, we only focus on the resistance heat loss of 
the battery when it is charged. 

 

 
Fig. 3.  Test procedures for battery modeling. 

 

Fig. 4.  HPPC test. 
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Fig. 5.  OCV with respect to SoC. 
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Fig. 6.  pC  variation with different SoC. 
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Fig. 7.  0R  and pR  dependence on SoC. 
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C. Charger loss 

A Xantrex XDC 10-600 power source is controlled as a 
battery charger with a maximum voltage of 10V. Its efficiency is 
measured with a WT1800 precision power analyzer when the 
output voltage ranges from 6V to 8.5V at a step of 0.5V and 
output current ranges from 0A to 50A at a step of 5A, as shown 
in Fig. 10. Due to the voltage limit of the power source, and 
current limit of the power analyzer, two cells are connected in 
series as a module in the experiment setup.  

During the charging process, the charger efficiency changes 
due to variations of output voltage and current. Its terminal 
voltage in the charging mode is calculated according to electric 
equivalent model, and the charger power loss is calculated, as 
presented in (4) and (5), respectively.  

 0( ) [ ) ( )]batt ocv pU U SoC R SoC R SoC I  （
  (4) 

 , arg

1
( 1)

( , )loss ch er batt
batt

P U I
U I

 
  (5) 

where   is the efficiency of the charger, and , argloss ch erP  is the 

power loss of the charger. 

Table II shows the comparison of the modeled loss of the 
charger with experiment results at different charging rates. It 
shows that the loss model for the charger can estimate the loss of 
the charger within 4.41% error. 

III. DYNAMIC PROGRAMMING AND APPLICATION 

DP is considered as a cost effective method in the energy 
loss calculation. DP expresses complex practical problems as 
multistage decision processes. It builds loss matrices that save 
the data which are most likely to be frequently used in future 
calculation to save computation time [22]. 

A. Minimization of battery loss 

The charging process can be regarded as battery SoC 
changes from an initial state minSoC  to the final state maxSoC  

within the given charging time charget . There are many possible 

paths, i.e., charging profiles, even though the start point and end 
point are determined. The goal of this paper is to use DP to find 
an optimal charging current profile with which the energy loss 
can be minimized. 

 

The charging energy loss from iSoC  to 1iSoC   can be 
expressed in the discrete form as  

      , 2 2
, 1,p i

loss cell
i p L Li i i i iE i R SoC i R SoC t t     . (6) 

Here, since pC  is large enough and there is only a small 

difference between Li  and Pi when charging the battery, we 
assume Li  equals Pi  to simplify the problem without sacrificing 
the validity. Hence, we can get, 

 
     , 2

, 1
loss cell
i L i p i i i iLE i R SoC R SoC t t     . (7) 

In order to realize DP, some constraints should be properly 
considered, and the optimization problem is subject to the 
constraints, 

 
 0 /max min b chargeI SoC SoC C t       (8) 

 02maxI I
  (9) 

where charget
 
is the charging time with unit of hour, 0I  is the 

current value if the battery cell is charged in CC mode during 
the whole charging process, bC  denotes the battery rated 
capacity, maxI  is the maximum charging current, and we define 
it as two times of 0I . The minimum current minI  is set to zero. 
In order to solve the problem with acceptable accuracy and 
without too much calculation labor, the current step value stepI  

is defined below, 

 0

50step

I
I   (10) 

 , 0,1,2, ,50stepI k I k     . (11) 

 
Fig. 8.  Model validation with UDDS drive cycle tests. 
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Table II. Validation for Charger Loss Modeling 
Charge 
rate (C) 

Experiment 
(Wh) 

Simulation 
(Wh) 

Error 
(Wh) 

Error 
(%) 

0.25 480.98 502.17 21.19 4.41 

0.50 298.09 309.67 11.58 3.88 

0.75 241.86 249.55 7.70 3.18 

1.00 200.13 198.52 1.61 0.80  
 

Fig. 9.  Calculated and empirical losses. 
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From (11), there are totally 51 selections for current 

commands during the calculation. The task of DP is to find a 
sequence of optimal current commands from them. In order to 
realize DP, a loss matrix with respect to different SoC and 
charging current should be constructed to build the cost-to-go 
matrix [20, 23]. After the loss matrix is constructed, DP will 
choose the best path to the current state by (12). 

 
i-1 i-1 i

i i-1 i-1

soc soc soc

soc soc soc

min_cost +loss <min_cost

min_cost =min_cost +loss   (12) 

where 
isocmin_cost  is the minimum cost at iSoC , and 

i-1socloss  is 

the loss at i-1SoC . 
By comparing the cost of all the paths which pass the current 

state, this algorithm ensures that at time t , iSoC  is reached with 

minimum energy loss, and the cost is stored as 
isocmin_cost . The 

same calculation will be carried out repeatedly until maxSoC and 

charget  is reached. As such, the final result will be the minimized 

energy loss in the charging process. Based on this calculation, 
the optimal current profile can be searched in a backward way. 

Fig. 11 shows the optimal charging current profile based on 
the proposed method and CC method both in time domain and 
SoC domain. The total charging time is 1 hour. We can see that 
using CC method, the current is 32A, whereas, using the 
proposed method, the current varies from 26.2A to 35.2A. Fig. 
12 shows the charging current variation and resistance variation 
with battery SoC. It can be seen that, within 0% to 80% SoC 
range, DP assigned the current in the pattern that the charging 
current is relatively higher where the resistance is lower, the 
charging current is relatively lower where the resistance is 
higher, and the average charging current is maintained the same 
as that of the CC method. Through this way, the charging losses 
can be decreased. To some extent, it can explain why the 
proposed method can improve the charging efficiency. 

 

B. Minimization of charger loss 

During the charging process, the loss of the charger is 
dependent on cell SoC and charging current. The energy loss 
from iSoC  to 1iSoC  can be expressed in a discrete form, 

 
, 0
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( ) [ ( ) ( )]
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rge
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
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.
  (13) 

In order to easily compare the results, the constraints for DP 
are shown in (14), and the current step is set to 1A. 

 

min

max

min
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0
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0
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I

I
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  (14) 

Here, we simply set the battery initial SoC and ending 
charger SoC to 0% and 80%, respectively. The maximum 
charging current is 50A, and the total charging duration are set 

 

Fig. 10. Efficiency map for charger. 
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Fig. 11.  Optimal charging current. 
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Fig. 12.  Cell optimal current profile and resistance of the battery cell. 
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to 1hr to 3hrs to compare the performances of the proposed 
algorithm. 

DP can also be applied to find the optimal charging scheme 
when only the charger loss is taken into consideration. Fig. 11 
shows the optimal current profile for charger loss minimization 
when charging for 1 hour compared with CC method. From Fig. 
10, the efficiency of the power source depends on the 
combination of voltage and current. The maximum efficiency is 
achieved when both voltage and current are maximized within 
their ranges. As a result, an optimal charging profile can be 
found when the voltage and current are both maximized. Thus, 
the charging current are set to the maximum allowable charging 
current and the terminal voltage can be maximized according to 
(4). 

 
It is interesting to note that the current is zero before the 

maximum current charging. It indicates that even for a longer 
period of charging time, DP will still find the same optimal 
charging schemes that remain zero current at the beginning and 
use maximum current to charge from 0% to 80% SoC. This is 
because the charger has a higher efficiency when the output 
current is higher, which makes DP always search for the highest 
efficient operating point. In addition, it also implies that the 
optimal charging current is not unique in this problem. The 
charging process can start at the beginning and the current 
remains zero after 80% charged. This is due to the fact that DP 
can always guarantee one optimal solution, however, it cannot 
find all optimal solutions if they are not unique. 

Based on [24], the charging scheme can be improved further 
if the maximum current charging time is distributed among 
charging duration in pulse charging form instead of CC charging. 
This can be done by adding penalty function into DP that takes 
the battery health into account. In this paper, we only focus on 
the charging efficiency, and the health penalty will be studied in 
our future work.  

IV. EXPERIMENT VALIDATION AND DISCUSSION 

Validation experiments are performed by applying both the 
optimal current profiles and the normal CC profile. Besides, for 
easy comparison, the battery cell and pack are both discharged 
with 1C current at room temperature. The energy loss difference 
in the two charging scenarios is the energy saved by applying 
the optimal current profile. The energy loss can be calculated by 
(15). 

        2 4

1 3

t t

loss t t
E V t I t dt V t I t dt     (15) 

where 1 2 3 4, , ,t t t t  are the beginning time and ending time for both 
charging process and discharging process, respectively. The 
beginning and ending values of the SOC can be easily set up. In 
this paper, we only assign the beginning SoC as 0% and target 
charging SoC as 80% to compare the improvements. 

A. Cell loss minimization 

Fig. 13 shows the optimal charging current series for 0% to 
80% SoC with difference charging time. The charging time 
ranges from 1 hour to 3 hours with a step of 0.5 hours. The 
charging current commands with different SoC look similar. 
However, when the charging time increases, the charging 
current profile will become flatter. This is because the charging 
loss is proportional to charging time and resistance, but 
quadratic to charging current. 

 

Table III compares the charging loss with different charging 
current. It can save 1.85%, 4.28%, 2.24%, 2.18%, and 4.81% 
when charging time changes from 1 hour to 3 hours. It shows 
that the proposed method is effective to decrease the charging 
loss, thus improving the charging efficiency.  

B. Charger loss minimization 

The optimal current for charger loss minimization is shown 
in Fig. 11. As discussed in the previous section, the optimal 
currents keep unchanged as the charging time varies. The energy 
savings are mainly induced by the difference of the efficiency 
during the charging process. Table IV compares the charging 
loss with different charging time. The result shows that this 
method could effectively decrease the loss of the charger. 

 

C. Overall loss minimization 

It needs to note that both of these two optimal current 
profiles are the results for local optimization, i.e. battery loss 
minimization and charger loss minimization, respectively. They 
are not necessarily the global optimization for the whole 
charging process. 

Based on their step loss expressions, an overall loss 
minimization can be achieved by adding them at each step in DP. 
Since the overall loss involves two parts, i.e. battery loss and 
charger loss, we can infer that when the charger loss dominates, 
the overall optimal current should look closer to the charger 
optimal current, and vice versa.  

 
Fig. 13.  Cell optimal current profile for 1 hour to 3 hour. 

0 10 20 30 40 50 60 70 80
5

10

15

20

25

30

35

40

45

50

SoC (%)

C
ur

re
nt

 (A
)

 

 
1 hr

1.5 hr

2 hr
2.5 hr

3 hr

Table III. Comparison of CC and Battery Loss Minimization Charging 
Time 
(hr) 

CC loss 
(Wh) 

Optimal loss 
(Wh) 

Energy saved 
(Wh) 

Energy saved 
(%) 

1.0 7.75 7.60 0.15 1.85 

1.5 7.40 7.09 0.32 4.28 

2.0 6.67 6.53 0.15 2.24 

2.5 6.96 6.81 0.15 2.18 

3.0 6.64 6.32 0.32 4.81 

Table IV. Comparison of CC and Charger Loss Minimization Charging 
Time 
(hr) 

CC loss 
(Wh) 

Optimal loss 
(Wh) 

Energy saved 
(Wh) 

Energy saved 
(%) 

1.0 174.32 148.56 25.77 14.78 

1.5 221.82 148.56 73.26 33.03 

2.0 272.18 148.56 123.62 45.42 

2.5 320.71 148.56 172.16 56.68 

3.0 380.67 148.56 231.82 60.94 
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In the overall optimal current calculation, the battery module 
consists of two 40Ah pouch cell in series connection. Fig. 14 
shows the overall optimal current profile for 1 hour charging 
process, which is the same as the current profile when 
optimizing the charging efficiency only. This is due to the fact 
that the losses from the two battery cells are negligible when 
compared with that from the charger.  

As shown in Fig. 13, when the charging time increases, the 
average charging current becomes lower. From (7), a lower 
charging current leads to a lower loss for the battery, and from 
Fig. 10, a lower average current indicates a higher loss of the 
charger. From Table III and Table IV, we can see that the 
charger loss is much larger than the battery loss. Therefore, 
when the charging time is 1 hour, the charging scheme for 
global loss minimization will follow the same trend as that 
shown in Fig. 11. Table V compares the losses in CC scheme 
and optimal charging scheme. The results show that the optimal 
scheme can save from 12.37% to 58.12% of energy when the 
charging time changes between 1 to 3 hours. 

 

 

 

Due to the 10V voltage limitation of the power source and 
50A current limitation of the power analyzer, experiments with 
more cells were not conducted. However, a simulation is carried 
out with the assumption that when more cells are connected in 
series, only the battery loss increases. Fig. 15 shows the battery 
loss percentage in the whole losses. The result shows that as the 
number of battery cell increases, the overall optimal current 
turns to be closer to the battery only optimal current as expected. 
Fig. 16 shows the current profile for different selected numbers 
of cells in the charging process. Combined with Fig. 15, it can 
explain that when the battery loss increases, the global 
optimized currents become closer to optimization curves when 
considering the batteries only. 

The energy savings in Table V largely depend on the wide 
efficiency band of the power source, which is regarded as 
charger in the experiments. In the real case, a commercial 
charger may not have such a wide efficiency range within its 
working condition. However, as long as there exist efficiency 
fluctuations in the charger, and SoC dependent energy loss in the 
battery, the proposed methodology can still be applied to find 
the optimal overall charging current to minimize the loss in the 
whole charging process. 

 

V. CONCLUSION 

An optimal charging algorithm for lithium-ion batteries is 
proposed to minimize the charging loss of the battery, the 
charger and both. DP is applied to find the optimal charging 
current profile. With knowing the battery beginning SoC, target 
SoC, and the charging time, the charging current command can 
be easily calculated by DP. Compared to CC charging strategy, 
the proposed method can effectively decrease the charging loss. 
Experiment results validated the feasibility of the proposed 
method for loss minimization in the whole charging process.  

Future work can be carried out on pack level experiments 
with more cells, improving the performance by evaluating its 
impact on battery life, and adding penalty functions in the DP 
calculation. In addition, an online improved battery model that 
considers the influence of the battery temperature and aging will 
be our future work to improve the application of the proposed 
algorithm. 
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