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Abstract: Non-radiative inductive power transfer is one of the most studied and commercially
applied wireless charging technologies, where the magnetic field is employed as the medium for
power transfer. In the wireless charging of electric vehicles, the strong magnetic field will heat up any
metal items falling in the charging area due to eddy current induced in the metal objects, causing
hazards like fire. Metal object detection (MOD) is necessary for the market penetration of inductive
power transfer technology. This paper aims to improve the performance of systems that detect metal
objects based on inductance variations. Two novel multi-layer detection coil layouts are proposed,
which can not only cover the entire charging area without blind spots but can also be decoupled from
the transmitter and receiver to minimize the influence of the magnetic field that is used for power
transfer. Two mixed resonant circuits are proposed and proven to have better performance than
parallel and series resonance. The impacts of the detection coil layer, trace width, and turn-number
are investigated. The test results indicate that the MOD system can detect one-cent coins at various
positions of the detection coil printed circuit board, and can also detect various inductance variations
without blind spots in the processing circuit.

Keywords: multi-layer detection coil; inductance variation; metal object detection; wireless charging;
inductive power transfer

1. Introduction

Wireless power transfer (WPT) is the emerging technology that can potentially provide convenient
charging without cables [1-3]. WPT via near-field magnetic induction, or non-radiative inductive
power transfer, is one of the most studied and commercially applied technologies among all WPT
technologies [4-7]. One of the typical applications of inductive power transfer is the wireless charging
of electric vehicles (EVs) [8-10], which can achieve charging automation and convenience, especially
for future autonomous vehicles. However, the strong magnetic field that the WPT system relies on for
power transfer can induce strong eddy currents in the metal objects (MOs) falling in the charging area,
leading to hazards like fire. On the other hand, the charging area of a wireless EV charging system
is normally large, allowing living objects (LOs), such as cats, dogs, and toddlers, to enter the area,
causing danger to them. MOs and LOs are foreign objects (FOs) and a wireless EV charging system
should be able to detect them.
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Foreign object detection (FOD) technology is crucial to the safe operation of a wireless EV
charging system. FOD can be divided into metal object detection (MOD) and living object detection
(LOD). There are two major methods of FOD in a wireless EV charging system. The first method
is called the wave-based detection method, in which wave-based devices, such as radar [11-13],
ultrasonic transducer [14], video camera [14,15], and thermal camera [14,16], are employed to detect FOs.
The precision of this method is dependent on the device and signal processing, which is high in cost.

The other method is called the field-based detection method, in which the variation of resistance,
inductance, or capacitance is utilized to indicate the existence of an FO. The variation of these electric
quantities can also lead to the variation of some other electric quantities, such as quality factor [17],
induced voltage [18,19], mutual inductance [20], and resonant frequency [21]. These parameters
can also be used for object detection. The field-based detection method can be further divided into
inductive sensing and capacitive sensing. The inductive sensing is based on inductance variation and
is normally used for MOD. A detection coil array is added on the surface of the transmitter to detect
the existence of an MO. The capacitive sensing is based on capacitance variation and is normally used
for LOD [22]. The categories of FOD technology are shown in Figure 1.
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Figure 1. Category of foreign object detection (FOD), metal object detection (MOD) and living object
detection (LOD) technology.

In the field-based detection method, via inductive sensing, there are two major methods. The first
one is the passive detection method, in which the magnetic field of power transfer is utilized to generate
induced voltages on the detection coil, which is affected by MOs. In Reference [18], a coil set consisting
of two unipolar coils is used as the detection coil. Without an MO, the induced voltages on these two
coils would be the same. The existence of an MO would lead to the imbalance of the induced voltages,
which can be used to detect the MO. There is no external source and no impact from the field of power
transfer. However, there are many blind spots and it can only perform on-line detection and the power
transfer must be on.

The other method is active detection method, where an external source is applied to one detection
coil and the parameter variation on this detection coil [23] or another [24] is employed to indicate
the existence of an MO. The advantages of this method include fewer blind zones than the passive
detection method and the ability to conduct off-line detection. However, an external source is required,
and the magnetic field of the power transfer will impact the precision of MO detection. The impact can
be alleviated by decoupling the detection coils from the transmitter coil (TX) and filtering the signals
from power transfer.

The active detection method based on inductance variations of detection coils is adopted.
Compared with Reference [23], novel coil array layouts are proposed in this paper to not only cover
the whole area, including the boundary area of each detection coil, but the detection coils are also
decoupled from the TX. The mixed resonant circuits are studied to amplify the inductance variation
for better detection performance. The impacts of the coil layer, trace width, and turn number are
investigated. Experiments are conducted to validate the proposed detection method.

2. Detection Coil Array

Because the TX is a unipolar coil, to minimize the impact of the magnetic field from power transfer,
the detection coil should be decoupled from the TX. The detection coil can be designed as a bipolar
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coil, which consists of two unipolar coils with opposite polarities connected in series. The idea of
decoupling is to let these two unipolar coils have opposite amounts of magnetic flux so that the induced
voltages on these two unipolar coils by the field of the main coils can cancel each other out.

In order to minimize the area of blind spots, the two unipolar coils forming a bipolar coil should
not be adjoining. Otherwise, the area around the common line or point would be the blind spot,
because around this area, the MO would have approximately the same impact on these two unipolar
coils and the parameter variation would be negligible. In addition, since the parameter variation in the
boundary areas is weak, the boundary area of a detection coil should be overlapped by the center area
of another detection coil. Thus, an MO can be guaranteed to be around the center area of one of the
detection coils.

2.1. Three-Layer Hexagonal Layout Detection Coils

In consideration of the above principles, a hexagonal cell layout for the detection coils is proposed
for the MOD system, as shown in Figure 2a. The detection coils are placed in the hexagonal cell
arrangement. The centers of the detection coils are fixed at the centers of the hexagons. The detection
coil length and shape can be varied. The effective detecting area of each coil should at least cover the
hexagon area. Thus, the whole area can be detectable. In this paper, the actual coil shape is a square
coil, shown in Figure 2b. Coils with the same color are on the same layer. The two unipolar coils
marked with the same number are connected in series with opposite polarities to form a bipolar coil to
achieve decoupling from the TX. Thus, bipolar coils 1~6 are formed. Bipolar coils 1 and 2 are on the
top layer, 3 and 4 on the middle, and 5 and 6 on the bottom. A fourth layer is added for routing and
connection. For better understanding, the routing of bipolar coil 1 is shown in Figure 2b, where the
dotted line indicates the routing on the fourth layer. Therefore, the detection coil board is a four-layer
printed circuit board (PCB).

(2)

Figure 2. Detection coil layout. (a) Positions and arrangements of each coil, (b) actual coil shape
and routing.

The outer length of the unipolar coil is set to 60 mm and the inner length is 20 mm. A quarter of
the detection coils are built in the simulation software Ansys Maxwell, shown in Figure 3a, since it
is symmetrical in the two orthogonal directions. Figure 3b is half of the magnetic field distribution
between the transmitter and receiver. The self-inductance of the detection coil simulated by Maxwell
is 14.2 uH. The maximum coupling coefficient between the detection coil and the TX simulated by
Maxwell is 1.6%. Therefore, the decoupling is achieved.
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Figure 3. (a) Model of a quarter of the three-layer hexagonal layout detection coils in Maxwell. (b) Half
of the magnetic field distribution between the transmitter and receiver.

2.2. Four-Layer Rectangular Layout Detection Coils

Rectangle layout for the detection coils is also proposed for the MOD system. A half of the
proposed four-layer rectangle layout detection coil array in Maxwell is shown in Figure 4a. The structure
and parameters of the first layer detection coils are shown in Figure 4b. Two unipolar detection coils of
the first layer Aj; and A, are connected in series with opposite polarity to form the bipolar detection
coil A1, as shown in Figure 4b. Similarly, the unipolar detection coils Ap; and A, are connected to
form the bipolar detection coil A,. The self-inductance of the detection coil simulated by Maxwell is
22.2 uH. In the proposed four-layer overlapping detection coil array, the edge region of a detection
coil can be covered by the region near the center of detection coils in other layers, so the edge regions
of the detection coils are the overlapping area, as shown in Figure 4a. In this way, the blind spots at
the edge of the detection coils can also be eliminated. The four-layer PCB can be used to implement
the four-layer detection coil array, and the gaps between the detection coils of one layer are used for
wiring and routing of the detection coils in other layers.

Transmitter coil

(b)

Figure 4. (a) Model of a half of the four-layer rectangular layout detection coils in Maxwell. (b) The
Structural parameters of the first layer detection coils.

3. Principle of Detection

3.1. Inductance Variation

When an MO is placed above the detection coil, as shown in Figure 5a, the parameters of the
detection coil change. The equivalent circuit is given in Figure 5b. The MO can be regarded as an
inductance Lyjo in series with its own equivalent resistance Ryjo, coupled with the detection coil.
Lget and Ryet are the inductance and resistance of the detection coil, respectively. M is the mutual
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inductance between the detection coil and the MO, which can be calculated explicitly [25]. Lgetvo and
Rgetmo are the equivalent inductance and resistance of the detection coil with the MO, respectively.

Transmitter Raat Rvyo i Riavo

/_» Coil M :—w»—‘ i —‘W\'—:

Detecpon Lt f&Lvo | ™ Lano
Coils ; H
Metal

Object  Detection Coil Metal Objeci
(a) (b

Figure 5. Detection coil with an MO. (a) Schematic, (b) equivalent circuit.

The input impedance of the detection coil with the MO is:

. (wM)* (@M)*Rwo ), . (@M)*Lmo
Zin = Rget + jwLget + Roo Tiolve, Rget + —————— 5 | +j@| Ldet — — AR
MO T JWLMO RMO + (wLmo) RMO + (wLmo)
Therefore, Lgetvio and Rgevio can be expressed as:
(@M)* Lo
Laennto = Lot = ————10— = Lyat(1 - @) @)
RMO + ((‘)LMO)
(wM)*Rnmo
Rgeto = Raet + 5 = Raet(1+B) @)

R}, + (wLmo)

where a and § are the variation ratio of the inductance and the resistance, expressed as:

(wM)*Lyio
a= 3 4)
[Ri/[o + (a)LMO) ]Ldet
8 (wM)*Ryo 5)

- [Ri/[o + (CULMO)Z]Rdet

As can been see from Equations (2) and (3), the equivalent inductance of the detection coil
decreases by a and the equivalent resistance increases by g with the presence of an MO. A larger M
results in a larger inductance variation. That means that when the MO is close to and located at the
center of the detection coil, M is large and so is the inductance variation.

3.2. Mixed Resonances

3.2.1. SP Mixed Resonances

Even though the inductance and resistance changes due to the existence of an MO, the variation
itself is quite small and the measurement of these variations can be difficult. Therefore, a resonant
circuit can be applied to the detection coil to amplify the inductance variation. Basically, there are
two resonant topologies: series resonance and parallel resonance. They were analyzed and compared
in Reference [23] and parallel resonance was selected due to its lower sensitivity to noise and lower
power consumption when there is no MO. On the basis of parallel resonance, the capacitor in series
with a detection coil was added to form a mixed resonance, where the series connected capacitor Cg
and the parallel connected capacitor Cp resonate with the detection coil together, as shown in Figure 6.
This mixed resonance is called the SP mixed resonance in this paper. However, Reference [23] has not
revealed how to select Cp and Cg so as to maximize the variation.
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The resonant angular frequency of the SP mixed resonant circuit is:
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Without MOs, the input impedance Z;, at wy is:

1 1 .
jwoCp (ja)OCs +jwoLdet + Rdet)

I + (ke +j@oLdet + Raer)

jwoCp jwoCs

Zin(wo) = = AwoLget(AQqet —j) 8)

where Qqet is the quality factor of the detection coil, defined as:

woLget

Qdet = Ry )

With the presence of an MO, assume Lgepvo = (1 — a)Lget and ignore the variation of the equivalent
resistance for simplicity. The input impedance can be calculated as:

2
Qe 2Quer ] (10)

1+ (O‘Qdet)2

For proportional amplifier circuits or voltage division circuits, it is the impedance amplitude that
affects the output. Therefore, the impedance amplitude variation is studied. The ratio of the input
impedance amplitude difference 6 is defined as:

Zinmo (wo) = AwoLdet(/\

|Zinmol = |Zin
5= 11
|Zin| ( )

where 6 can be the indicator for the system performance. The larger the absolute value of 6, the better
the system performance.
When the angular frequency is wy, the amplitude of the input impedance without and with an

MO can be expressed as:
[Zin(@0)] = AwoLaet Y1+ (1Qaer)? (12)

1-2
1+ (anet)z

Comparing Equation (12) with Equation (13), the existence of & in the second term under the
square root of Equation (13) reduces the amplitude due to the increase of the denominator and decrease

>I*

|Zinmo(@o)| = AwoLget \/1 + (AQuet) (13)
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of the numerator. The larger the a, the larger the amplitude variation. In addition, the smaller the A,
the larger the amplitude variation. The larger the Qget, the larger the amplitude variation.

In the study of the SP mixed resonance, the detection coils are three-layer hexagonal layout
detection coils. According to Maxwell simulation results, Lge is set to 14.2 pH, Ryt is set to 3.6 ),
and the resonant frequency is set to 1 MHz. The relationship between 6 and A under different values
of a and g is shown in Figure 7. With the decrease of A, the absolute value of 6 is increasing, which
validates that the smaller the A, the larger the variation, and the better the system performance.
However, if A is too small, the system input impedance would not be high, and the SP mixed resonant
circuit would not be as insensitive to the noise as the parallel resonant circuit. Therefore, A should be
properly selected according to the designed system.

BT e
© -20 -7 .
—a=1%, =5%
250 - - a=2%, =5%
N S a=2%, 3=10%
30—
0 02 04 06 08 1

A
Figure 7. 6 changes with A under different values of & and f.
Based on the calculation setup above, A is set to 0.2, and how 6 changes with the operating

frequency f is shown in Figure 8. The maximum variation, which is the valley value of 0, occurs at the
frequency point slightly smaller than the resonant frequency.

—a=1%, 8=5% =
1011 - a=2%, B=5% | &~ T,
......... a=2%, =10%

0.9 0.95 1 1.05 1.1
Frequency (MHz)

Figure 8. 6 changes with f under different values of & and g, for the SP mixed resonance, when A = 0.2.

From both Figures 7 and 8, it can be seen that the amplitude variation is more sensitive to the
inductance variation than to the resistance variation.

3.2.2. PS Mixed Resonances

PS mixed resonance is defined when a capacitor is added in series with the parallel resonance of
the detection coil, as shown in Figure 9, it is called PS mixed resonance in this paper. In the case of PS
mixed resonance, neglecting the detection coil resistance, the resonant angular frequency is:

o= (14)

VLdet(Cs + Cp)



Energies 2020, 13, 2960 8 of 16

Lget

Zin Ret

C——

o T

Figure 9. PS mixed resonance to amplify inductance variation.

The input impedance of the resonant circuit without MOs on the detection coils can be expressed as:

jwlcp (ijdet + Ryet) 1
- +
j_wle + (]CULdet + Ryet) jwCs

Zin(w) = (15)

In the study of the PS mixed resonance, the detection coils are four-layer rectangular layout
detection coils. According to Maxwell simulation results, Lqet is set to 22.2 pH, Rqet is set to 4.9 (),
the resonance frequency is set to 1 MHz, Cg is set to 0.2 nF, and Cp is 0.94 nF. When « is 4.7%, the input
impedance of the resonant circuit and 6 change with the operating frequency f is shown in Figure 10.
The maximum variation, which is the valley value of 6, occurs at the frequency point slightly larger
than the resonant frequency. The proposed PS mixed resonant circuit not only has a high impedance,
but also has a large impedance variation ratio.

6 80
=5t 160
& 140
o 4f
3 120
£, o £
é >y
ol 1-20
a2 1-40
=
1-60
0 - - - -80
09 1.0 1.1 1.2 1.3

Frequenéy (MHz)
Figure 10. The input impedance of the resonant circuit and 6 change with the operating frequency f.
3.3. System Topology

The overall circuit of the MOD system is shown in Figure 11. The SP and PS mixed resonant
circuits can both be adopted to amplify the inductance variation. The PS mixed resonant circuit is
shown in Figure 11. Cp is the parallel capacitance, Cg the series capacitances, BS;; and BS1, constitute
a bidirectional switch, and so do BS;; and BSy», - -+, BS,1 and BS,,». The bidirectional switches are used
to select one branch of detection coil at a time. Ug is a high-frequency alternating current (AC) source,
Rg is the divider resistance, and Uge; is the voltage on the resonant circuit at the operating frequency, as:

|Zin|

Uget = ——2
et ™ 1Rs + Zinl

Us (16)

In this way, the inductance variation of the detection coil « is converted into the voltage variation.
Despite the use of bipolar detection coils, it is difficult to completely cancel out the induced voltage
in the detection coils, so a third order high-pass filter is used to filter out the noise near the power
transfer frequency. A diode is utilized to convert the AC output voltage into the direct current (DC)
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output voltage, Uoyt, so that a low-cost voltage sensor can be used to measure the DC output voltage.
The voltage gain of the overall system is defined as:

uout
Gy = 17
u— US ( )

Rs

Us

Uget

Figure 11. System topology.

This voltage gain is the indicator of the existence of an MO. The voltage gain variation is used to
measure the degree of variation for cases without and with an MO, and is defined as:

_ Guw, — Guwo _ Udetvo = Udet (18)
GLIwo udet

where, Giwo is the voltage gain without an MO and Gy, is the voltage gain with an MO, Ugepvo is
the voltage on the resonant circuit with an MO.

Figure 12 shows y versus a at three different operating frequencies of the PS mixed resonant circuit.
Here, a negative « indicates the reduction in the detection coil inductance, and a positive a indicates
the increase in the detection coil inductance. As can be seen from Figure 10, the maximum impedance
variation occurs in the frequency range slightly larger than the resonance frequency, and three operating
frequencies are selected from this frequency range. When the operating frequency is 1.02 or 1.12 MHz,
there is a blind spot where the output voltage does not change. When the operating frequency is
1.07 MHz, there is no blind spot for detecting various inductance variation. The proper operating
frequency should be lower than the frequency where the impedance of the resonant circuit is maximal,
as shown in Figure 10. But, if the operating frequency is much lower than the frequency, it will
still cause blind spots. Therefore, the proper operating frequency should be slightly lower than the
frequency where the input impedance of the resonant circuit is maximal. In this way, the reasonable
operating frequency can be selected to eliminate the blind spot in the processing circuit.

1000

— [=1.02MHz
maeeees f=1.07TMHz

504 f=1.12MHz

blind spot””

46.2%
‘im/

i caused by the

£zcoin 4.7%

10 =30 =20 10770 10
(%)

=100

Figure 12. y versus a at three different operating frequencies of the PS mixed resonant circuit.
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4. System Implementation and Measurement

4.1. Impacts of Detection Coil Parameters

The research on the impacts of the detection coil parameters in this subsection is based on the MOD
system of the three-layer hexagonal layout detection coil array and the SP mixed resonance circuit.

Based on Figure 2, a PCB detection coil is designed and fabricated with its layout shown in
Figure 13. The two unipolar coils encircled by a rectangle form a bipolar coil. The coil outer length is
60 mm and the inner length is 20 mm. The other coil parameters of these six bipolar coils are given in
Table 1. The inductance is measured when the detection coil board is placed on the TX with ferrite.
Coil 5 has the largest inductance value among Coils 1, 2, 3, and 5 because it is on the bottom layer and
is closest to the ferrite.

Figure 13. Printed circuit board (PCB) layout of the three-layer hexagonal layout detection coils.

Table 1. Detection coil parameters.

Coils Layer Trace Turn Measured
Width (mm) Number Inductance (uH)
Coil 1 1 0.5 11 14.54
Coil 2 1 0.3 11 14.69
Coil 3 2 0.5 11 14.56
Coil 4 2 0.5 6 5.01
Coil 5 3 0.5 11 15.13
Coil 6 3 0.5 21 53.22

A United States (US) one-cent coin is selected as the MO, shown in Figure 14a. The positions of
the MO are defined in Figure 14b. The best and worst positions of the bipolar coil are at the center and
corner (boundary position) of one of the unipolar coils, respectively. When the MO is placed further
away from the boundary position, another bipolar coil can be selected for the MO to be considered to
have a better position.

US One-Cent Coin
| Copper-plated zinc
| Diameter: 19.05 mm
Thickness: 1.52 mm

(@
Figure 14. MO. (a) Photograph, (b) positions.

To investigate the impact of A, different combinations of Cp and Cg are selected. Take Coil 1 as an
example. As can be seen from Figure 7, the smaller the A, the larger the impedance variation. Three A
are used to verify the impact of A on the system performance, and A depends on the combinations
of Cp and Cs. When Cg is eliminated and Cp = 1.60 nF, A = 1; when Cg = 8.48 nF and Cp = 1.97 nF,
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A =0.81; when Cg = 1.97 nF and Cp = 8.48 nF, A = 0.19. Figure 15 shows the voltage gain variation y
changing with the operating frequency under different values of A when the coin is placed at the center
position. A smaller A leads to a larger y, which validates the analysis in Section 3.2.1. The following
experiments are all conducted when y is around 0.2.

—&—Coil 1: A=1.00| |
—0—Coil 1: A=0.81
—e—Coil 1: A =0.19

-30

Voltage Gain Variation 7 (%)

40 . . . . |
0.8 0.9 1 1.1 1.2 1.3
Operating Frequency (MHz)

Figure 15. Measurements of y varying with f under different values of A for Coil 1.

To investigate the impact of different layers of the PCB, Coils 1, 3, and 5 are compared. Cg = 1.97 nF
and Cp = 8.48 nF. The measurements of these three coils when the coin is placed at the center position
are shown in Figure 16. Coil 1 at the top layer has the largest variation because it is closest to the coin

vertically. Coil 3 at the middle layer has the second largest variation and Coil 5 at the bottom layer has
the smallest variation.

—&—Coil 5: Bottom Layer
—o— Coil 3: Middle Layer
—e—Coil 1: Top Layer

Voltage Ratio Variation ~y (%)

-40
0.95 1 1.05 1.1 .15
Operating Frequency (MHz)

Figure 16. Measurements of y varying with f for Coils 1, 3, and 5.

To investigate the impact of trace width, Coil 1 and Coil 2 are compared. Cs = 1.97 nF and
Cp = 8.48 nF. The measurements of the two coils when the coin is placed at the center position are

shown in Figure 17. Coil 1 has a larger voltage gain variation due to its larger quality factor caused by
the larger trace width.

=20 F

-30F

Voltage Gain Variation ~y (%)

—o—Coil 2: 0.3 mm Trace Width| |
—e—Coil 1: 0.5 mm Trace Width

a0t . .
0.95 1 1.05 1.1 1.15

Operating Frequency (MHz)

Figure 17. Measurements of y varying with f for Coils 1, 3, and 5.
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To investigate the impact of turn numbers, Coils 1, 4, and 6 are compared. For Coil 1, Cg = 1.97 nF
and Cp = 8.48 nF. For Coil 4, Cg = 6.35 nF and Cp = 25.07 nF. For Coil 6, Cg = 0.62 nF and Cp = 2.48 nF.
Thus, A is around 0.2 for these three coils. The measurements of these three coils when the coin is placed
at the center position are shown in Figure 18. The larger the turn number, the larger the voltage gain
variation. This is because a large turn number in this case leads to a large quality factor, which helps
improve the detection accuracy. Therefore, Coil 6 is selected to test the system performance.

—8—Coil 4: N
—6—Coil I: N
——Coil 6: N

Voltage Gain Variation v (%)
\ ) o .
=1

6
11
21

-50 -
0.9 0.95 1 1.05 1.1 1.15
Operating Frequency (MHz)

Figure 18. Measurements of y varying with f for Coils 1, 4, and 6.

For Coil 6, the MO is placed at two positions and two heights: namely at the center and boundary
positions, and when the MO is directly attached to the detection coil (0 mm) and when the MO is 5 mm
above the detection coil. Cg = 0.62 nF and Cp = 2.48 nF. Another case is studied when there is one coin
at the center position and one at the boundary. The measurements of these five cases are shown in
Figure 19. We can see that even at the boundary position at 5 mm, the voltage gain variation is about
10%, significant enough to be detected. Thus, the proposed solution can cover the whole area at 5 mm
above the detection coil. For the case with two coins, the voltage gain variation is larger than the case
with one coin, as expected.

—&—Coil 6: 5Smm @Boundary
—o— Coil 6: 0mm @Boundary
—e—Coil 6: Smm @Center
—#—Coil 6: 0omm @Center

i Coil 6: 0omm With 2 Coins

Voltage Gain Variation ~ (%)

-60
0.9 0.95 1 1.05 1.1 1.15
Operating Frequency (MHz)

Figure 19. Measurements of y varying with operating frequency under different positions for Coil 6.
4.2. System Performance

In this Subsection, the MOD system uses the four-layer rectangle layout detection coil array and
the PS mixed resonant circuit. A wireless EV charging system is implemented, and the prototype of the
MOD system is shown in Figure 20. The experimental waveforms and the snapshot from the power
analyzer are displayed in Figure 21.

A portion of the four-layer rectangle layout detection coil array is processed with 1 mm thick
four-layer PCB, as shown in Figure 22. The measured inductance of a bipolar detection coil Lqet
is 22.18 uH. The series capacitance Cg in the PS mixed resonant circuit is 0.2 nF, and the parallel
capacitance Cp in the PS mixed resonant circuit is 0.94 nF. A one-cent coin was placed and tested at
various positions of the detection coil array, with the results of four positions shown in Table 2. Position
1is at the center of the detection coil Aj,. Position 2 and 3 are at the edge of Ajp. Position 4 is at the
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vertex of Ajp. The bipolar detection coils A1, B, C1, and Dy, are turned on in a certain order. When the
coin was placed at the center of the detection coil, the output voltage variation was —48.7%, which is
close to the calculated result in Figure 12. Even if the coin was placed at the vertex of Aj, the output
voltage variation could still reach 38.3%, when the detection coil D is turned on.

Processing circuit

Rectifier -

Figure 20. Photograph of wireless electric vehicle (EV) charging system with MOD system.
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Figure 21. (a) Experimental waveforms. (b) Snapshot from power analyzer.
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Figure 22. The PCB of the four-layer rectangle layout detection coil array.
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Table 2. y with the coin at different positions (pos.).

Coin Position Coil Aq Coil B Coil Cq Coil D¢
pos. 1 —48.7% -5.1% / /
pos. 2 —-8.9% -39.2% / /
pos. 3 —-8.9% -2.0% -39.9% -3.0%
pos. 4 —4.8% -9.9% -5.2% —38.3%

It is difficult to accurately place MOs at a given position during the power transfer. Therefore,
the MOs are firstly placed at the given position and are then removed. A quarter-dollar coin (75%
copper and 25% nickel, 24.26 mm in diameter, and 1.75 mm in thickness), a five-cent coin (75% copper
and 25% nickel, 21.21 mm in diameter, and 1.95 mm in thickness), and a one-cent coin are placed at the
center of a detection coil, and then the three coins are sequentially removed from the detection coil
PCB. The waveforms of the detection circuits are as shown in Figure 23. As the coins are removed
one by one, the amplitudes of Uget and Uyt also increase significantly one by one. The inductance
variations of the detection coils caused by three coins, two coins, and one coin are different, so the test
result indicates the MOD system can detect various inductance variations.

one-cent coin

- - was removed 7
five-cent doin : Ui
i i m
quarter-dollar ~ was removed i
coin was removed / /
2
Ex X
@ 50V @ ® 00V W
Value Mean Min Max Std Dev |
@ frequency |400ll\‘i 1 Z'zMSl".i. » ; -HJUI“Vl
[ LUK 5M points
2
& s 28 0ct é'uwl
| @ RMS 18:56:01

Figure 23. Waveforms of detection circuits when three coins were sequentially removed.

5. Conclusions

In this paper, the MOD systems suitable for wireless EV charging were proposed based on
inductive sensing in the field-based FOD method.

Compared with the single-layer detection coils, the novel three-layer hexagonal layout and
four-layer rectangle layout detection coil structures can cover the whole area of the TX pad without
blind spots, which can further improve the detection performance of the MOD system. Two adjacent
unipolar coils connected in series form a bipolar coil so as to decouple the detection coils from the
TX. Compared with the three-layer hexagonal layout detection coils, the four-layer rectangular layout
detection coils have a slightly larger potential for eliminating blind spots. But, for lower cost and easier
routing and wiring, the three-layer hexagonal layout detection coil structure will be a better choice.

The SP and PS mixed resonant circuits were proposed in this paper to amplify the inductance
variation for better detection performance. These two mixed resonances have the larger impedance
amplitude variation than the parallel resonant circuit and maintain the advantage of large impedance
amplitude at the same time. Furthermore, the methods to select the proper combination of series and
parallel capacitors and the methods to select the proper operating frequency are presented in this paper
to enhance the resonant circuits further.
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The impacts of the detection coil layer, trace width, and turn-number are investigated based on
the three-layer hexagonal layout detection coils. The upper layer, the larger trace width, and a larger
turn-number all have larger voltage variation. The test of the MOD system shows that the one-cent coin
can be detected at various positions both on the three-layer and four-layer detection coil PCB. Even if
the coin was placed at the worst position of the detection coils, the output voltage variation could still
reach 38.3%, and the MOD system can detect various inductance variations without blind spots.
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