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a b s t r a c t

The consistency of battery cells directly influences the maximum available energy and the efficiency of
the battery pack, and the energy utilization efficiency (EUE) is a key parameter for the balancing of
batteries. Therefore, this paper focuses on the consistency modeling and state estimation of battery
packs. In this study, a Copula-based battery pack consistency modeling method is developed. The pro-
posed method shows superiority compared with two existing methods, because it can describe the
statistical characteristics of the battery consistency parameters, and the dependence structure between
parameters. The squared Euclidean distances between the marginal empirical cumulative distribution
functions of the test data and that of the proposed model for capacity, resistance, and SOC are 0.029,
0.169, and 0.025, respectively. The errors of the correlation coefficients between the proposed model and
the test data are within 0.12. Then the framework of battery pack EUE estimation using the consistency
model is proposed. The accuracy of the proposed method is verified based on the test results of a battery
pack with 95 cells connected in-series. The EUE estimation error is within 0.6% at various discharge
current rates. The EUE estimation results could provide support for the performance evaluation and
balancing of battery packs.

© 2019 Published by Elsevier Ltd.
1. Introduction

In recent years, lithium-ion batteries have been widely used as
energy storage elements in energy storage systems (ESSs) and
electric vehicles (EVs), because of their high energy density, high
power density, high efficiency, and long service life [1e3]. Owing to
voltage and power limits, several hundred or more lithium-ion
battery cells are sometimes connected in-parallel and in-series in
the applications [4]. In a battery pack, because of the non-uniform
thermal field or the different locations where the battery cells have
been placed [5,6], the battery cells in the battery pack may have
different aging patterns, causing the battery cells to have different
capacity, internal resistance, and state of charge (SOC) during the
aging process. As a result, the lifetime of the battery pack is much
shorter than that of a single battery cell.

To evaluate the effect of battery inconsistency on the
ang), cmi@sdsu.edu (C. Mi).
performance of a battery pack, a battery pack consistency model is
needed. One of the most important ways to model the battery pack
consistency is to depict the statistical characteristics of battery
consistency parameters. Normally, probability distribution fitting
methods are used to describe the probability distribution functions
(PDFs) of such parameters. In Ref. [4], the authors compared the
statistical characteristics of new and aged battery cells in terms of
the battery capacity and impedance. The test results showed that
the capacity and impedance of new battery cells are normally
distributed. Along with the aging of the battery pack, the distri-
butions are altered from normal toWeibull distributions. In Ref. [7],
the researchers tested a retired lithium-ion battery pack. The test
results showed that Weibull and normal distributions are more
suitable to describe the battery capacity distribution and internal
resistance distribution, respectively. As for the SOC of the battery
cells, a skewed distribution is exhibited. In Ref. [8], the researchers
tested retired LiFePO4 battery cells and reported that both the
battery capacity and internal resistance are normally distributed. In
general, battery consistency parametersmay have different types of
distributions under different situations. However, in the existing
literature, only normal distributions are used to describe the
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parameter distributions when evaluating the effects of battery
inconsistency on the performance of the battery pack [9e11]. An
incorrect modeling of the battery consistency parameters will
result in an inaccurate estimation of the state of the battery pack.
Another aspect of battery pack consistency modeling is the
description of the correlation among the battery consistency pa-
rameters, because such parameters are always coupled [11]. In
Ref. [12], the correlation between battery capacity variations and
SOC variations was studied. It was found that a loss of variation in
the lithium inventory at the anodes of the battery cells is the
dominating factor causing SOC variations of the battery cells. The
correlation between battery coulombic and capacity fade was
studied in Ref. [13]. The low coulombic efficiency not only causes
the batteries to incur a faster rate of capacity fade, it also increases
the SOC inconsistency among the battery cells. The coupling
mechanisms between battery capacity fade, and the increase in the
internal resistance of the battery, were shown in Refs. [14,15].
Normally, the correlation coefficient between the battery capacity
and internal resistance is within the range of �0.2 and �0.8
[7,16,17]. Owing to the extremely complex coupling mechanisms
among the parameters, these parameters are assumed mutually
independent in existing battery pack consistency models. There-
fore, an effective battery pack consistency modeling method that
can describe both the statistical characteristics of the battery con-
sistency parameters and the correlation between the parameters is
needed.

With the battery pack consistency model, the state of health
(SOH) of the battery pack can be estimated. The battery pack SOH
indicators can either be defined as the battery pack capacity or the
battery pack internal resistance [11,18e20]. In Ref. [18], the battery
pack capacity is defined as the minimum capacity of the battery
cells. Considering the SOC variations of the battery cells, re-
searchers in Refs. [11,21] further defined the battery pack capacity
as the sum of the minimum remaining available capacity and the
minimum chargeable capacity of the cells. The authors of [19,20]
developed simple and effectivemethods to estimate the resistances
of the battery cells. However, these two battery pack SOH indicators
are not practical for a battery pack energymanagement (to a certain
extent), because they do not reflect the effect of battery cell
inconsistency on the performance of the battery pack. The energy
utilization efficiency (EUE) is used as a battery pack SOH indicator
in Refs. [9,22]. The advantage of this indicator is that it can be used
for an equilibrium diagnosis of the battery pack, because the
inconsistency of the battery cell directly affects the energy state of
the battery pack itself. However, the proposed EUE calculation
method in Ref. [22] is only suitable for small current applications,
and the accuracy of themethods in Refs. [9,10]has not been verified.
Therefore, an accurate battery pack EUE estimation method needs
to be studied.

Facing the two challenges mentioned above, this study provides
the following original contributions. First, a Copula-based battery
pack consistency model is developed, which realizes the descrip-
tion of the statistical characteristics of the battery consistency pa-
rameters and the correlation between parameters simultaneously.
Second, an accurate battery pack EUE estimation method is
developed. Given the battery pack consistencymodel, the statistical
characteristics of the battery pack EUE are obtained using the
Monte Carlo (MC) method. The expected value of the EUE simula-
tion results is then used as the estimated EUE. The remainder of this
paper is organized as follows. Section 2 illustrates the processes
used in the battery pack consistencymodeling. Section 3 introduces
the battery pack EUE estimation method. The battery tests con-
ducted are introduced in Section 4. The superiority of the proposed
battery pack consistency modeling method and the accuracy of the
battery pack EUE estimation method are discussed in Section 5.
Finally, some concluding remarks are provided in Section 6.
2. Battery pack consistency modeling

2.1. Definition of Copula

The Copula is defined as the joint cumulative distribution
function of standard uniform random variables, and is used to
describe the dependence between random variables. According to
Sklar’s theorem, every multivariable distribution function

Hðx1;…; xmÞ¼PðX1 � x1;…;Xm � xmÞ (1)

of a random vector ðX1;X2;…;XmÞ can be expressed in terms of its
marginal distribution functions and a Copula C. Normally, it is
expressed in the following form:

Hðx1;…; xmÞ¼CðF1ðx1Þ;…; FmðxmÞÞ (2)

Therefore, if given the Copula and the marginal distributions of
the input data, a set of random data can be generated that have the
same marginal distributions and structural dependence as those of
the input data.
2.2. The optimal Copula selection

The selection of an optimal Copula is crucial for accurately
modeling the joint cumulative distribution function (CDF) of the
battery consistency parameters. In this section, an analytical
method used to select the optimal Copula is introduced. Denote ðxi1;
xi2;…; ximÞ; i ¼ 1;…;n as the observations from a random vector ðX1;

X2;…;XmÞ. Then, the processes to determine the optimal Copula are
as follow:

Step 1: Determine the empirical CDFs Fnk ,

FnkðxÞ¼
1
n

Xn
i¼1

1
�
xik � x

�
(3)

where 1 is the indicator function of the events. Taking event ðxik � xÞ
as an example, 1ðxik � xÞ is defined as follows:

1
�
xik � x

�
¼
8<:1 if xik � x

0 if xik > x
(4)

Step 2: Determine the empirical Copula corresponding to the
observations,

bCðu1;…;umÞ ¼ 1
n

Xn
i¼1

1
�
Fn1
�
xi1
�
� u1;…; Fnm

�
xim
�
� um

�
(5)

where ðu1;…;umÞ are random variables within the range [0, 1].

Step 3: Fit different types of Copulas to the observations and
obtain

Cjðu1;…;umÞ (6)

where j is the number of Copulas that can be fitted.
Although there are numerous Copulas that can model the

structural dependence of bivariate data, only a few can address
multivariable data. Therefore, only a Gaussian Copula and t Copula
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are used to fit the observations in this study. The unknown pa-
rameters of Copulas are estimated using the maximum likelihood
estimation method [23,24].

Step 4: Calculate the squared Euclidean distance d2j between the
empirical and fitted Copulas,

d2j ¼
Xn
i¼1

���bC�ui1;…;uim
�
� Cj

�
ui1;…;uim

����2 (7)

where ðui1;ui2;…;uimÞ; i ¼ 1;…;n are the standard uniform random
variables transformed from ðxi1; xi2;…; ximÞ according to a probability
integral transform.

Step 5: The optimal Copula has the minimum squared Euclidean
distance d2j .
2.3. Copula-based sampling of the battery pack consistency model

Given the dataset of battery consistency parameters and the
optimal Copula, a series of new data can be generated. The pro-
cesses of generating new random data can be described as follows:

Step 1: Obtain the marginal empirical CDFs of the input data,
and then obtain the marginal CDFs (FkðxkÞ) using a kernel
smoothing method.
Step 2: Transform the data into the Copula scale (standard
uniform space) using the CDFs: uik ¼ FkðxikÞ.
Step 3: Determine the optimal Copula according to u.
Step 4: Generate a set of standard uniform distributed random
samples u’ from the optimal Copula.
Step 5: Transform a random sample back into the original scale
of the data using the inverse CDFs of the input data: xk’ ¼
F�k ðuk’Þ.

Therefore, ðX1’;X2’;…;Xm’Þ has the same marginal CDFs, as well
as the dependence structure, as ðX1;X2;…;XmÞ.

3. Battery pack EUE estimation

3.1. Theoretical analysis

Denote Qi Ri, and SOCstart;i as the battery capacity, internal
resistance, and SOC of the ith battery cell in the battery pack con-
sistency model mentioned in Section 2. It should be stated that
SOCstart;i in this study denotes the SOC value of the ith battery cell
when the battery pack is fully charged. To estimate the EUE of a
battery pack, the Thevenin model is used, which is shown in Fig. 1.
Uocv

I

Ro

Rp

Cp

Uo
UR

UP

+

+

-

-

Fig. 1. Thevenin model of a battery cell.
The terminal voltage Uo is given by Eq. (8):

Uo ¼Uocv � UR � UP (8)

where Uocv is the open circuit voltage of a battery cell, andUR and UP

are the voltages across the ohmic resistance Ro and polarization
resistance RP, respectively. Let the internal resistance R denote the
sum of the ohmic and polarization resistances. If the dynamic
characteristics of the polarization voltage are neglected, the ter-
minal voltage of a battery cell under a steady state can be estimated
through the following:

Uo ¼Uocv � I
�
Ro þRp

� ¼ Uocv � IR (9)

where I denotes the discharge current.
The EUE of a battery pack is the ratio of the discharge energy of

the battery pack at a certain discharge rate from battery pack
SOC¼ 100%, to battery pack SOC¼ 0, to the sum of the maximum
available energy of the battery cells in the pack. The mathematical
expression of a battery pack EUE is shown in Eq. (10). The discharge
energy of the battery pack is affected by the discharge current,
because a portion of the energy is consumed by the internal re-
sistances of the battery cells. Therefore, the EUE of a battery pack
with N series-connected battery cells can be calculated using Eq.
(11).

EUE¼ Epack dis

Epack max
(10)

EUE¼
PN

i¼1

ðt0þDt

t0

�
Uocv;iðtÞ,I � RiðtÞ,I2

�
dtPN

i¼1Qi,Uav
(11)

where Uav is the average open circuit voltage during the time in
which SOC changes from 100% to 0,△t is the discharge time of the
battery pack, and Uocv,i(t) and RiðtÞ are the change in the OCV and
internal resistance of the ith battery cell over the discharge time t,
respectively. Normally, it is assumed that the SOC-OCV curve of all
battery cells are the same despite the battery cells having different
capacities. Therefore, the relationship between OCV and SOC can be
expressed as follows:

UOCV ¼ f ðSOCÞ (12)

Because all batteries are series-connected, the discharge time of
the battery pack can be determined by finding the battery cell with
the minimum residual electric quantity in the battery pack. Denote
Qpack as the battery pack capacity, DSOCi and SOCend;i as the SOC
range and SOC of ith battery cell when discharged to the cutoff
voltage with current I, respectively. The discharge time of the bat-
tery pack is then given as follows:

Dt¼Qpack

I
¼ min

1�i�N

DSOCi,Qi

I
¼ min

1�i�N

�
SOCstart;i � SOCend;i

�
,Qi

I

(13)
3.2. Implementation of EUE estimation

As shown in Eq. (11), the internal resistance is expressed as a
function of the discharge owing to the fact that the internal battery
resistance varies at different SOC values [25,26]. In real applica-
tions, it is assumed that the internal resistance of a battery can only
be tested when the battery cell SOC is at 50%. To establish the
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relationship between the internal resistance of the battery and the
SOC, the following is adopted:

RiðSOCÞ¼RijSOC¼50%,gðSOCÞ (14)

where RiðSOCÞ and RijSOC¼50% are the internal resistance at different
values of SOC, and the resistance tested at 50% SOC of the ith battery
cell, respectively. For all battery cells, their g(SOC) are considered to
be the same. Because g(SOC) can be obtained through offline
measurements, the internal resistance of all battery cells over the
entire SOC range can be determined if their resistances tested at
50% SOC are given. Then, the evolution of the internal resistance
with discharge time can be expressed as Eq. (15):

RiðtÞ¼RijSOC¼50%,g
�
SOCstart;i �

I,t
Qi

�
(15)

In addition, the discharge time of the battery pack relies on the
estimation of SOCend;i in Eq. (13). Denote OCVend;i as the OCV of the
ith battery cell after discharging to the cutoff voltage. The SOCend;i
can then be determined using the inverse function of Eq. (16):

SOCend;i ¼ f�1�OCVend;i
�
: (16)

Here, OCVend;i is related to the internal resistance, discharge
current rate, and the discharge cutoff voltage of the battery.
Because the discharge cutoff voltage is a fixed value, OCVend;i can be
expressed as follows:

OCVend;i ¼hðI;RijSOC¼50%Þ: (17)

Based on the derivations above, the simplified functions of the
EUE estimation and the discharge time of the battery pack are
obtained, which are shown in Eqs. (18) and (19), respectively.
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Fig. 2. (a) SOC-OCV curves of the five selected battery cells and (b) unified SOC-OCV
curve used in the EUE estimation.

EUE¼
PN

i¼1

ðt0þDt

t0

�
Uocv;iðtÞ,I � RijSOC¼50%,g

�
SOCstart;i �

I,t
Qi

�
,I2
�
dtPN

i¼1Qi,Uav
(18)
Dt¼ min
1�i�N

�
SOCstart;i � f�1

�
h
�
I;RijSOC¼50%

��
,Qi

I
(19)

It should be mentioned that EUE in Eq. (18) is a random variable
with a complicated PDF. Therefore, the numerical results of the EUE
cannot be solved through a mathematical derivation. To address
this problem, a Monte Carlo (MC) simulation is used. The idea of an
MC simulation is to repeat the simulation numerous times to obtain
the statistical characteristics of the model outputs. As for the model
inputs for each simulation, they can be obtained through random
sampling according to the probability distributions of the param-
eters. Therefore, the MC can propagate the input uncertainties into
the output uncertainties [27,28]. To express the EUE simulation
results, the expected value of EUE is used. With m simulations, the
estimated value of the EUE can be calculated using Eq. (20):

EUE¼ 1
m

ðEUE1 þ/þ EUEmÞ: (20)
4. Battery tests

4.1. Battery pack and battery cell test

To verify the proposed battery pack consistency modeling
method and its application on a battery pack EUE estimation, a
retired LiFePO4 lithium-ion battery is tested. The battery pack had
been used in a pure electric passenger vehicle for more than three
years. The battery pack consists of 95 series-connected battery
cells, and its rated capacity is 60 Ah. After the battery pack was
disassembled from the vehicle, the battery pack underwent a series
of tests to determine the cell-to-cell variations of the battery cells.
First, a battery pack rate capability test was conducted. The battery
pack was first charged at 0.1C, and then discharged at 0.1C, 0.3C,
0.7C, and 1.2C. After testing the rate capability of the battery pack,
the battery pack was disassembled into 95 individual battery cells.
Battery cell capacity and battery cell internal resistance tests were
then conducted. In the battery cell capacity test, all battery cells
were charged and discharged at 0.1C within the cutoff voltages
(3.65 V and 2.5 V for the charge and discharge processes, respec-
tively). An internal resistance test of the battery cells was con-
ducted when the SOC of each battery cell was 50%. During the test,
the battery cells were discharged at 0.5C for 10 s. The ratio of the
voltage change to the discharge current during this period is
defined as the internal resistance of the battery cell. Based on the
results of the battery pack rate capability and the battery cell ca-
pacity tests, the SOC variations of the battery cells were also
determined. A detailed description of the experiment processes
was introduced in our previously published paper [7].
4.2. Complementary tests

To make the EUE estimation more accurate, 5 of the 95 battery
cells were selected to conduct the following three complementary
experiments.

(1) SOC-OCV measurement

From SOC¼ 100% to SOC¼ 0, the five battery cells were dis-
charged by 5% SOC each time and set to rest for 2 h. The OCV was
then measured after the rest time. Fig. 2(a) shows the SOC-OCV
curves of the five battery cells. The five curves exhibit little
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Fig. 4. The response surface of battery OCV after discharge to the cutoff voltage with
respect to the internal resistance of the battery at 50% SOC and the discharge current
rate.
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difference over the entire SOC range. The unified SOC-OCV curve
used in the EUE estimation is then obtained by averaging the five
curves, as shown in Fig. 2(b).

(2) Internal resistance tests of battery cells over the entire of SOC
range

Internal resistance tests were conducted on the five battery cells
over the entire SOC range. From SOC¼ 100% to SOC¼ 5%, the bat-
tery resistances were tested using the same method described in
Section 4.1. To obtain the resistances at 0% SOC, a 10 s charge con-
stant current pulse was applied. The resistances of this charging
process could be calculated, and were considered the resistances at
0% SOC. Fig. 3(a) shows the resistances of the five battery cells and
their average resistance curve along with the change in the battery
SOC. The internal resistance of the battery increases quite slowly as
the SOC decreases from 100% to 40%. However, when the SOC is
lower than 40%, the internal resistance increases significantly, and
the resistance almost doubles when the SOC approaches zero. Then,
g(SOC) is obtained according to the average resistance curve and Eq.
(14). The result is shown in Fig. 3(b), and this piecewise linear curve
is used to estimate the battery resistances at other SOC values if
their resistances measured at 50% SOC are given.

(3) OCVmeasurement of battery cells after the discharge process

As shown in Eq. (17), the OCV is a function of the discharge
current and the internal resistance. To obtain this function, the five
battery cells were discharged to a lower cutoff voltage of 2.5 V, from
0.1C to 1.3C. Then, the OCV of the battery cells after a 2 h rest were
measured. Based on the test results, Eq. (17) is obtained by building
a response surface between the OCV of the battery cells after
discharge to the cutoff voltage, internal resistances of the battery at
50% SOC, and the discharge current rates. The response surface is
shown in Fig. 4. The OCV at a specific discharge current rate can
then be estimated through an interpolation if the internal resis-
tance at 50% SOC is given.

5. Validation and discussion

5.1. Copula-based battery pack consistency model

Fig. 5 shows the histograms of the battery capacity, internal
resistance, and SOC of the battery cells mentioned in Section 4.1.
The distribution of the battery capacity appears normal because the
histogram of the battery capacity is almost symmetrical. However,
the histograms of the internal resistance of the battery and the SOC
are asymmetrical, namely, the former is right-skewed and the latter
is left-skewed.

To show the statistical dependence between consistency
parameters of the battery cells, a scatter plot among parameters is
presented in Fig. 6(a)-(c). In Fig. 6(a) and (c), the correlation be-
tween parameters is weak because the points are discrete. How-
ever, there is a significant correlation between the battery capacity
and the SOC in Fig. 6(b), meaning the initial SOC of the battery
increases as the battery capacity increases.

Through the steps described in Section 2, a three-dimensional
battery pack consistency model is established, as shown in Fig. 7.
5.2. Comparison of the proposed battery pack consistency model
and the traditional models

To show the advantages of the Copula-based battery pack con-
sistency modeling method, the proposed battery pack consistency
model is comparedwith two other battery pack consistencymodels
built without Copula.

Battery pack consistency model #1 (Model #1):
In battery pack consistencymodel #1, themodel is built using an

inverse transform sampling method. To describe the distributions
of the battery consistency parameters, the cumulative distribution
functions are used. Let ðxi1; xi2;…; ximÞ; i ¼ 1;…;n be the n observa-
tions. In general, the processes of battery pack consistency
modeling can be concluded through the following steps:
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Fig. 7. The 3-dimensional battery pack consistency model.
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Step 1: Generate a set of random numbers u’ ¼ ½ui1’;……;uim’�
from the standard uniform distribution in the interval [0, 1].
Step 2: Find the empirical CDFs FnkðxkÞ of ðxi1; xi2;…; ximÞ and the
related inverse empirical CDFs Fn

�
k ðxkÞ.

Step 3: Calculate xk’ ¼ F�1
k ðuk’Þ and obtain ðx1’;…;xk’Þ.

Although the battery pack consistency modeling processes of
Model #1 is similar to that in the Copula-based modeling processes
(because they both use an inverse transform samplingmethod), the
following two differences between them should be noted:

(1) In the Copula-based model, the CDFs of the battery pack
consistency parameters are used. The CDFs are obtained ac-
cording to the empirical CDFs and the kernel smoothing
methods. However, in Model #1, only the empirical CDFs of
the battery consistency parameters are used. The reason for
using CDFs instead of empirical CDFs in the Copula-based
modeling method is that only the CDFs can transform the
data into standard uniformly distributed data, which is
required by the definition of Copula.

(2) The random variables u’ in the Copula-based model are
generated according to the optimal Copula but u’ inModel #1
is generated randomly.

Battery pack consistency model #2 (Model #2):
Previously [9,10], the capacity distribution, internal resistance

distribution, and SOC distribution were described using three
independent normal distributions. This battery pack consistency
model can be further improved as a multivariable normal distri-
bution of a three-dimensional vector X ¼ ½Qi;Ri; SOCi�T, which is
written in the following form:

X � Nðm;SÞ (21)

using the three-dimensional mean vector

m ¼ EðXÞ
¼ ½EðQiÞ; EðRiÞ; EðSOCiÞ�T

¼ 	mQ ;mR;mSOC
T (22)

and 3� 3 covariance matrix

S¼

26664
s2Q r1;2sQsR r1;3sQsSOC

r1;2sQsR s2R r2;3sRsSOC

r1;3sQsSOC r2;3sRsSOC s2SOC

37775 (23)

where mQ ;mR;mSOC are the mean values of the battery capacity, the
internal resistance, and the SOC; sQ ; sR;sSOC are the standard de-
viations of the battery capacity, the internal resistance, and the
SOC; and r1,2, r1,3, and r2,3 are the correlation coefficients between
the capacity and resistance, the capacity and the SOC, and the
resistance and the SOC, respectively.

The probability density function of this three-dimensional
multivariable normal distribution is as follows:

y ¼ f ðx;m;SÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSjð2pÞ3

q exp

 
�1
2

�
X� m

�T
S�1

 
X� m

!!
(24)

where jSj is the determinant of the S. Then the battery pack con-
sistency model can then be built using this probability density
function.

Three battery pack consistency models (with 1000 sampling
points) are built using the same battery test data from Section 4.
The three models are then compared in terms of the statistical
characteristics of the battery consistency parameters and the
dependence structure between these parameters.

Fig. 8 shows the empirical CDFs of the battery capacity, internal
resistance, and SOC of the test data and those of the three battery
pack consistency models. The CDFs of the test data and Model #1
are almost the same because the sampling points in Model #1 are
generated according to the inverse empirical CDFs of the test data.
When comparing the CDFs of Copula-based model and Model #2
with those of the test data, the three curves are highly overlapped
in Fig. 8(a). In Fig. 8(b) and (c), the difference between the CDF of
the Copula-based model and that of the test data is quite small,
whereas significant differences exist between the CDF of Model #2
and that of the test data.

Fig. 8 shows the modeling results for a single sampling process.
To achieve a quantitative evaluation of the three models, the
squared Euclidean distances between the marginal empirical CDFs
are calculated according to the following:

d2 ¼
Xn
i¼1

���Fnk0�xik�� Fnk
�
xik
����2; (25)

where Fnk0ðxikÞ is the marginal empirical CDF of the test data and
FnkðxikÞ is the marginal empirical CDF of a specific battery pack
consistency model. To eliminate the randomness in the sampling
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process, the sampling processes for each model are repeated 1000
times and their average value is regarded as the final calculation
result. The calculation results of the squared Euclidean distance
between the marginal empirical CDFs are shown in Table 1. Model
#1 has the smallest d2 values in all cases. The value of d2 of Copula-
based model is slightly larger than that of Model #1 but the dif-
ference is negligible. The value of d2 of Model #2 is much larger
than that of the other two models. Therefore, it can be concluded
that the Copula-based model and Model #1 are better than Model
#2 when describing the statistical characteristics of the battery
pack consistency parameters.

To determine the dependence structure between parameters of
the three battery pack consistency models, the correlation coeffi-
cient between parameters is calculated according to Eq. (26).

rX;Y ¼
COVðX;YÞ

sXsY
(26)

Similar to the above, the sampling processes are also repeated
1000 times, and the average values are considered to be the final
calculation results, which are shown in Table 2. For the test data,
although there is a strong positive correlation between the battery
capacity, the correlation between the battery capacity and resis-
tance, and between the resistance and SOC, is weak. The correlation
coefficients of the Copula-basedmodel andModel #2 are extremely
close to that of the test data. As for Model #1, the correlation co-
efficients are almost zero, which means that there is no correlation
between the parameters. To explain the results more intuitively, the
scatter plots between the battery capacity and the SOC from the test
data and the three models are presented in Fig. 9. In Fig. 9(b) and
(d), battery cells that have larger capacity values also have higher
SOC values, which is close to the behaviors shown in Fig. 9(a).
Table 1
The squared Euclidean distance d2 between the marginal empirical CDF of the test
data and the empirical CDFs of the three battery pack consistency models.

Item Capacity Resistance SOC

Copula-based model 0.029 0.169 0.025
Model #1 0.015 0.015 0.016
Model #2 0.301 0.825 0.852

Table 2
Correlation coefficient between parameters in the different battery pack consistency
models.

Item Capacity-Resistance Resistance-SOC Capacity-SOC

Test data �0.188 �0.221 0.856
Copula-based model �0.279 �0.217 0.746
Model #1 �0.001 �0.001 0.003
Model #2 �0.189 �0.222 0.855
However, in Fig. 9(c), the dots are dispersive and there is no cor-
relation between the two parameters. Therefore, it can be
concluded that the Copula-basedmodel andModel #2 can describe
the dependence structure between variables more accurately.

To summarize, Model #1 is good at describing the statistical
characteristics of the battery consistency parameters because the
model is built using an inverse transform sampling method and the
inverse empirical CDFs in the model are the same as those of the
test data. Therefore, Model #1 has the highest accuracy when
describing the battery consistency parameter distributions. In
addition, because only the empirical CDFs of the battery consis-
tency parameters are used, fitting the distributions of these pa-
rameters is not needed. However, a method based on inverse
transform sampling is not suitable for modeling multiple variables,
particularly when a correlation exists among the parameters. This
is because the traditional sampling method cannot generate two
sets of standard uniformly distributed random variables with a
specific correlation. Hence, the correlation coefficient between the
parameters in Model #1 cannot be ensured. As for Model #2, it is
good at describing the dependence structure between variables
because a covariance matrix (Eq. (23)) used in the model. However,
one disadvantage of this model is that it assumes that all battery
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model, (c) Model #1, and (d) Model #2.
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consistency parameters are normally distributed. If a parameter is
not normally distributed, the accuracy of describing the statistical
characteristics of the parameters will be significantly reduced. For
example, the SOC distribution in Fig. 5(c) is clearly not normally
distributed. Therefore, the squared Euclidean distance between the
marginal empirical CDF of Model #2 and that of the test data is
much larger than that of the other two models. For the Copula-
based battery pack consistency model, it integrates the advan-
tages of Model #1 and Model #2, and can accurately describe the
statistical characteristics of the variables as well as the correlation
between variables. In addition, similar to Model #1, this model is
also not limited by the distribution type of the battery consistency
parameters. Therefore, the Copula-based model is the best among
the three battery pack consistency models.

5.3. Verification of battery pack EUE estimation

Using the proposed Copula-based battery pack consistency
model, the battery pack EUE at different current rates can be esti-
mated according to Eq. (18) and Eq. (19). The true values of the
battery pack EUE can be obtained from the battery pack rate
capability and battery cell capacity tests. According to the results of
the battery pack rate capability test, the battery pack discharge
energy at different current rates can be obtained. Similarly, the
maximum available energy that the battery pack can store can be
calculated according to the test results of the battery cell capacity
test. According to Eq. (18) the EUE of the battery pack at different
current rates is calculated, the results of which are shown in Table 3.
As the discharge current rate increases from 0.1C to 1.2C, the esti-
mated battery pack EUE decreases from 62.01% to 54.47%. For the
given four discharge current rates, the estimation errors are all
within 0.6%, demonstrating that the proposed battery pack con-
sistency modeling and the EUE estimation method have high levels
of accuracy.

6. Conclusion

This paper proposes a novel battery pack consistency modeling
method, and then the model is applied to estimate the EUE of a
battery pack.

First, a Copula-based battery pack consistency modeling
method is proposed. This model is then compared with two other
models. The squared Euclidean distance d2 between the marginal
empirical CDF of the test data and that of three battery pack con-
sistency models are used to compare the ability of describing the
statistical characteristics of the battery parameters. The results of
the Copula-based model and Model #1 are all close to 0 (0.029,
0.169, and 0.025, respectively, for the Copula-based model, and
0.015, 0.015, and 0.016, respectively, for Model #1), which means
that these two models are good at describing the statistical char-
acteristics. The results of Model #2 (0.301, 0.825, and 0.852,
respectively) are much larger than the results of the other two
models, showing the weakest ability among the three models. The
correlation coefficients between the parameters are used to
compare the ability of describing the dependence structure be-
tween parameters. Model #1 shows no ability to describe the
Table 3
EUE estimation results.

Rate EUE (%) Estimated EUE (%) Error (%)

0.1C 62.56 62.01 �0.55
0.3C 60.38 60.10 �0.27
0.7C 57.70 57.46 �0.23
1.2C 54.54 54.47 �0.07
correlation between parameters because the results are almost
zero. The Copula-based model and Model #2 have a similar capa-
bility to describe the correlation between the parameters because
the results of the two models (�0.279, �0.217, and 0.746, respec-
tively, for Copula-based model, and �0.189, �0.222, and 0.855,
respectively, for Model #2) are extremely close to that of the test
data (�0.188, �0.221, and 0.856, respectively). Compared with the
two existing battery pack consistency modeling methods, the
proposed method exhibits good comprehensive performance both
in describing the statistical characteristics of battery consistency
parameters and the dependence between them.

Then, based on the battery pack consistency model, a frame-
work to estimate the battery pack EUE is proposed. The EUE esti-
mation value is obtained using the MC method. The proposed
battery pack consistency modeling and EUE estimation method is
verified based on the test results of a retired lithium-ion battery
pack with 95 in-series connected LiFePO4 battery cells. The EUE
estimation errors at various discharge current rates arewithin 0.6%.

Because this study focus on the modeling of the battery pack
consistency and its application to a battery pack EUE estimation,
only the feasibility and accuracy are discussed herein. The battery
consistency parameters in the study are obtained using an offline
measurement. Our future work will focus on battery pack consis-
tency modeling and EUE estimation using an on-board estimation
of the battery consistency parameters.

Acknowledgment

This work is supported by the National Key R&D Program of
China [2018YFB0905304]; National Natural Science Foundation of
China [U1664255]; and the Key Project of National Natural Science
Foundation of China [61633015]. The authors would like to thank
the members at the National Active Distribution Network Tech-
nology Research Center (NANTEC), Beijing Jiaotong University to
help perform all the experiments of lithium-ion batteries
mentioned in the paper.

References

[1] Liu K, Li K, Peng Q, Zhang C. A brief review on key technologies in the battery
management system of electric vehicles. Front Mech Eng 2019;14:47e64.

[2] Li Y, Liu K, Foley AM, Zülke A, Berecibar M, Nanini-Maury E, Van Mierlo J,
Hoster HE. Data-driven health estimation and lifetime prediction of lithium-
ion batteries: a review. Renew Sustain Energy Rev 2019;113:109254.

[3] Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion
battery management in electric vehicles. J Power Sources 2013;226:272e88.

[4] Schuster SF, Brand MJ, Berg P, Gleissenberger M, Jossen A. Lithium-ion cell-to-
cell variation during battery electric vehicle operation. J Power Sources
2015;297:242e51.

[5] Klein M, Tong S, Park JW. In-plane nonuniform temperature effects on the
performance of a large-format lithium-ion pouch cell. Appl Energ 2016;165:
639e47.

[6] Liu K, Zou C, Li K, Wik T. Charging pattern optimization for lithium-ion bat-
teries with an electrothermal-aging model. IEEE T Ind Inform 2018;14:
5463e74.

[7] Jiang Y, Jiang J, Zhang C, Zhang W, Gao Y, Guo Q. Recognition of battery aging
variations for LiFePO4 batteries in 2nd use applications combining incre-
mental capacity analysis and statistical approaches. J Power Sources
2017;360:180e8.

[8] Xu X, Mi J, Fan M, Yang K, Wang H, Liu J, Yan H. Study on the performance
evaluation and echelon utilization of retired LiFePO4 power battery for smart
grid. J Clean Prod 2019;213:1080e6.

[9] Diao W, Xue N, Bhattacharjee V, Jiang J, Karabasoglu O, Pecht M. Active battery
cell equalization based on residual available energy maximization. Appl Energ
2018;210:690e8.

[10] Zhang C, Jiang Y, Jiang J, Cheng G, Diao W, Zhang W. Study on battery pack
consistency evolutions and equilibrium diagnosis for serial- connected
lithium-ion batteries. Appl Energ 2017;207:510e9.

[11] Zhou L, Zheng Y, Ouyang M, Lu L. A study on parameter variation effects on
battery packs for electric vehicles. J Power Sources 2017;364:242e52.

[12] Zheng Y, Ouyang M, Lu L, Li J. Understanding aging mechanisms in lithium-ion
battery packs: from cell capacity loss to pack capacity evolution. J Power
Sources 2015;278:287e95.

http://refhub.elsevier.com/S0360-5442(19)31914-0/sref1
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref1
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref1
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref2
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref2
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref2
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref3
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref3
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref3
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref4
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref4
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref4
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref4
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref5
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref5
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref5
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref5
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref6
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref6
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref6
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref6
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref7
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref7
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref7
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref7
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref7
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref8
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref8
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref8
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref8
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref9
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref9
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref9
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref9
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref10
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref10
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref10
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref10
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref11
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref11
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref11
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref12
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref12
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref12
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref12


Y. Jiang et al. / Energy 189 (2019) 116219 9
[13] Yang F, Wang D, Zhao Y, Tsui K, Bae SJ. A study of the relationship between
coulombic efficiency and capacity degradation of commercial lithium-ion
batteries. Energy 2018;145:486e95.

[14] Yang X, Leng Y, Zhang G, Ge S, Wang C. Modeling of lithium plating induced
aging of lithium-ion batteries: transition from linear to nonlinear aging.
J Power Sources 2017;360:28e40.

[15] Yang X, Wang C. Understanding the trilemma of fast charging, energy density
and cycle life of lithium-ion batteries. J Power Sources 2018;402:489e98.

[16] Ma Z, Jiang J, Shi W, Zhang W, Mi CC. Investigation of path dependence in
commercial lithium-ion cells for pure electric bus applications: aging mech-
anism identification. J Power Sources 2015;274:29e40.

[17] Schuster SF, Brand MJ, Campestrini C, Gleissenberger M, Jossen A. Correlation
between capacity and impedance of lithium-ion cells during calendar and
cycle life. J Power Sources 2016;305:191e9.

[18] Mathew M, Kong QH, McGrory J, Fowler M. Simulation of lithium ion battery
replacement in a battery pack for application in electric vehicles. J Power
Sources 2017;349:94e104.

[19] Mathew M, Janhunen S, Rashid M, Long F, Fowler M. Comparative analysis of
lithium-ion battery resistance estimation techniques for battery management
systems. Energies 2018;11:1490.

[20] Lievre A, Sari A, Venet P, Hijazi A, Ouattara-Brigaudet M, Pelissier S. Practical
online estimation of lithium-ion battery apparent series resistance for mild
hybrid vehicles. IEEE T Veh Technol 2016;65:4505e11.
[21] Feng X, Xu C, He X, Wang L, Gao S, Ouyang M. A graphical model for evalu-

ating the status of series-connected lithium-ion battery pack. Int J Energ Res
2019;43:749e66.

[22] Diao W, Jiang J, Liang H, Zhang C, Jiang Y, Wang L, Mu B. Flexible grouping for
enhanced energy utilization efficiency in battery energy storage systems.
Energies 2016;9:498.

[23] Xi Z, Jing R, Wang P, Hu C. A copula-based sampling method for data-driven
prognostics. Reliab Eng Syst Saf 2014;132:72e82.

[24] Valizadeh Haghi H, Lotfifard S. Spatiotemporal modeling of wind generation
for optimal energy storage sizing. IEEE T Sustain Energ 2015;6:113e21.

[25] Bao Y, Dong W, Wang D. Online internal resistance measurement application
in lithium ion battery capacity and state of charge estimation. Energies
2018;11:1073.

[26] Zhang Y, Shang Y, Cui N, Zhang C. Parameters identification and sensitive
characteristics analysis for lithium-ion batteries of electric vehicles. Energies
2018;11:19.

[27] Zhang Y, Xiong R, He H, Pecht MG. Lithium-ion battery remaining useful life
prediction with boxecox transformation and Monte Carlo simulation. IEEE T
Ind Electron 2019;66:1585e97.

[28] Kroese DP, Brereton T, Taimre T, Botev ZI. Why the Monte Carlo method is so
important today. Wiley Interdiscip Rev: Comput Stat 2014;6:386e92.

http://refhub.elsevier.com/S0360-5442(19)31914-0/sref13
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref13
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref13
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref13
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref14
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref14
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref14
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref14
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref15
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref15
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref15
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref16
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref16
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref16
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref16
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref17
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref17
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref17
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref17
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref18
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref18
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref18
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref18
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref19
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref19
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref19
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref20
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref20
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref20
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref20
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref21
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref21
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref21
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref21
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref22
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref22
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref22
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref23
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref23
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref23
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref24
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref24
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref24
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref25
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref25
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref25
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref26
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref26
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref26
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref27
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref27
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref27
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref27
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref27
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref28
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref28
http://refhub.elsevier.com/S0360-5442(19)31914-0/sref28

	A Copula-based battery pack consistency modeling method and its application on the energy utilization efficiency estimation
	1. Introduction
	2. Battery pack consistency modeling
	2.1. Definition of Copula
	2.2. The optimal Copula selection
	2.3. Copula-based sampling of the battery pack consistency model

	3. Battery pack EUE estimation
	3.1. Theoretical analysis
	3.2. Implementation of EUE estimation

	4. Battery tests
	4.1. Battery pack and battery cell test
	4.2. Complementary tests

	5. Validation and discussion
	5.1. Copula-based battery pack consistency model
	5.2. Comparison of the proposed battery pack consistency model and the traditional models
	5.3. Verification of battery pack EUE estimation

	6. Conclusion
	Acknowledgment
	References


