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H I G H L I G H T S

• Introduced a novel RL network-based
ECM to describe the battery CV char-
ging current.

• Developed enhanced ECMs containing
multiple parallel-connected RL net-
works.

• Conducted a comparative study to
determine the preferred model struc-
ture.

• Proposed a simplified model with sa-
tisfactory current estimation accuracy.

• Validated the feasibility and super-
iority with test data after different
cycles.
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A B S T R A C T

A constant-current constant-voltage (CCCV) charge protocol is commonly used for lithium-ion batteries. The
dynamic characteristic of the constant-voltage (CV) charging current is discovered to be related to battery aging.
In order to quantitatively describe the load current during the CV charging period, an equivalent circuit model
(ECM) based on the resistor-inductor (RL) network is proposed in this paper. Motivated by the current expression
derived based on the conventional resistor–capacitor (RC) network-based ECM, an RL network-based ECM is
developed to characterize the CV charging current. Then, the parallel-connected RL networks are employed to
improve the model fidelity. The test data of four lithium iron phosphate (LiFePO4) batteries in different aging
states are employed to validate the proposed model. Comparative results show that the proposed 2nd-order ECM
is the best choice, considering both the model accuracy and complexity. In addition, a simplified 2nd-order
model is proposed, achieving a satisfactory accuracy with only three model parameters to be identified.
Therefore, this model can be easily implemented in the battery management system (BMS).

1. Introduction

The transportation system is developing towards the electrification
[1,2] and intelligence [3,4]. The success of vehicle electrification de-
pends on the low-cost, safe and efficient on-board battery pack. Re-
cently, lithium-ion batteries have been widely used in electric vehicles

(EVs) due to their advantages of the long cycle life, high energy and
power capabilities [5,6]. In order to ensure the safe and efficient op-
eration, a sophisticated battery management system (BMS) is required
to monitor and control the battery parameters such as voltage, current,
state-of-charge (SoC) [7,8], state-of-health (SoH) [9,10], state-of-en-
ergy (SoE) [11] and so on, in real time. In the battery management
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technique, the battery model is a basic issue for most of the state esti-
mation algorithms. Hence, a simple yet accurate battery model is es-
sential for a high-performance BMS.

1.1. Review of the literature

Due to the relatively simple structure and the satisfactory accuracy,
the equivalent circuit model (ECM) is widely used for the on-board
battery terminal voltage prediction and state estimation [12]. The
conventional ECM consists of a finite number of resistor–capacitor (RC)
networks connected in series. Specifically, the RC network is used to
describe the polarization effects, and a higher number of RC networks
(i.e., a higher order ECM) yields a higher degree of battery terminal
voltage estimation accuracy [13,14]. However, at the same time, the
complex model increases the computational burden and reduces the
numerical stability for the subsequent battery state estimation, which
limits its application on the low-cost microcontroller [15,16]. Different
ECMs of lithium-ion batteries have been compared and analyzed in the
literature by many authors. For example, Ref. [17] conducted a com-
parative study of twelve ECMs in terms of the model complexity, ac-
curacy and robustness. Ref. [14] compared and analyzed seven im-
pedance-based ECMs with respect to their voltage estimation and state-
of-available-power prediction accuracy. Ref. [18] provided a compre-
hensive overview of the available battery/supercapacitor models, with
a particular focus on fractional-order techniques. Besides, in order to
decrease the computational effort without sacrificing the model accu-
racy, Ref. [19] simplified the complex ECM into the type of reduced
order based on the dynamics of the battery. Additionally, a measure-
ment noise model and data rejection were implemented to ensure the
subsequent SoC estimation accuracy. Ref. [20] proposed an adaptive
battery model based on a remapped variant of the Randles’ circuit
model, and the subspace parameter-estimation algorithms were applied
online and in combination with the battery state estimation. Experi-
mental results demonstrated the superiority of this model to the con-
ventional Randles’ circuit, in terms of the parameter identification and
the states estimation performances. Ref. [21] developed an accurate
battery model by considering the hysteresis dependence in the re-
lationship between the open circuit voltage (OCV) and SoC, which
ensured an accurate and stable SoC estimation. Ref. [22] employed the
1st-order ECM to estimate the battery SoC, and updated the model
parameters online through the extended Kalman filter. Moreover, to
reduce the convergence time, the initial states were determined by the

recursive least squares algorithm and the off-line identification method.
It has to be noted that the ECMs within the aforementioned study

are mainly used to predict the battery voltage response in the vehicle
driving condition. For EVs, due to the dynamic and uncertain driving
profile, the discharging process of the on-board battery tends to be
incomplete and within a random SoC range. Hence, it is a challenging
task to precisely evaluate the battery aging state, especially the capacity
degradation, based on the driving profile [23]. However, it is more
convenient for the BMS to estimate the battery SoH based on the re-
latively simple charging profile, such as the constant-current constant-
voltage (CCCV) charging profile [24–26]. Abundant researches have
been conducted to seek the accurate model for the battery under the CC
charging condition. Tsang et al. [27] used a universal battery model
based on a simple mathematical equation to capture the charging
characteristics of the battery. The least squares algorithm was utilized
to obtain the unknown model parameters. Verification results demon-
strated that this model can capture the charging profiles at different
charging rates. Furthermore, Low et al. [28] considered the influence of
various ambient temperatures on this model, and developed a new
temperature-based equation to represent the normalized CC charging
profile at various ambient temperatures. Alfi. et al. [7] trained the ra-
dial basis function network offline with the data collected from the
battery charging process, then this kind of neural network was applied
to determine the battery SoC. Compared with the constant-current (CC)
profile, the constant-voltage (CV) profile is more robust to the uncertain
initial charging state. In addition, the loss of lithium inventory occurred
during the CV profile is more common and obvious than that occurred
during the CC profile. Ning et al. [29] verified that 5.5% of the cyclable
lithium loss took place in the CC charge mode but 94.5% cyclable li-
thium loss took place in the CV charge mode. These results confirmed
that the measurements during the CV charging profile is effective to
reflect the battery aging state. In order to quantitatively describe the
dynamic characteristic of the current during the CV charging period,
Eddahech et al. [30] used a simple exponential function based mathe-
matical model to simulate the corresponding current behavior. In ad-
dition, they found that one of the identified model parameters was
closely related to the battery capacity loss, and demonstrated a linear
function with respect to the SoH. Yang et al. [31] and Wang et al. [32]
obtained the detailed expression of the CV charging current based on
the conventional first-order ECM, thus the associated parameters had
the explicit physical meaning. Besides, two current-related character-
istic parameters, i.e., the current time constant and the CV charging

Nomenclature

Abbreviations

BMS battery management system
CCCV constant-current constant-voltage
CC constant-current
CV constant-voltage
ECM equivalent circuit model
EV electric vehicle
HPPC hybrid pulse power characterization
LiFePO4 lithium iron phosphate
OCV and Voc open circuit voltage
RC resistor-capacitor
RL resistor-inductor
RMSE root mean-squared error
SoC state-of-charge
SoH state-of-health
A, B and C function coefficients
Cp, Rp capacitance and resistance in the RC network
I load current

Ik branch current through each RL network
Imea,i measured current
Iest,i estimated current
Leq equivalent inductance
n order of the model
N recorded data size
NLS nonlinear least squares
R2 R-square
Ro ohmic resistance
Req equivalent resistance
Req,k equivalent resistance for each RL network
ti recorded time point
t1 and tN start point and end point of the CV charging process
Vp voltage across the RC network
Vt battery terminal voltage
ymea,i measured value
yest,i estimated value
y̅mea mean value of the measured data
τeq equivalent time constant
τeq,k equivalent time constant for each RL network
θ vector of unknown model parameters
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aging factor, respectively, were further extracted to indicate the battery
SoH. Although the estimated current in [31] can overall track the
measured value, obvious mismatches were still observed at the initial
and end regimes of the CV charging period.

1.2. Contributions of the paper

The objective of this manuscript is to seek a practical ECM that al-
lows for accurate estimation of battery current under the CV charging
condition. The main contributions of this paper are:

(1) A resistor-inductor (RL) network-based ECM is first introduced. The
mathematical expression of the CV charging current is derived
based on the conventional RC network-based ECM. According to
the analysis of the expression, a novel ECM containing the RL
network is proposed to characterize the battery current behavior
though the CV charging period.

(2) Enhanced ECMs consisting of multiple RL networks are developed.
Considering the nonlinear characteristic of the CV charging current,
a higher order ECM with multiple RL networks connected in par-
allel are proposed to capture the current characteristic more pre-
cisely.

(3) A comparative study is conducted to determine the preferred model
structure. The test data of four lithium iron phosphate (LiFePO4)
batteries after different aging cycles are employed to validate the
feasibility and superiority of the developed model. Comparative
results demonstrate that the proposed 2nd-order ECM is the best
choice, considering both the model accuracy and complexity.

(4) The simplified model is further developed. By analyzing the iden-
tified parameters of the 2nd-order ECM, a simplified model is
proposed with satisfactory current estimation accuracy while with
less parameterization effort in comparison to the same order ECM.

1.3. Organization of the paper

The reminder of this paper is organized as follows: In Section 2, the
novel RL network-based ECM is introduced to characterize the CV
charging current. In Section 3, the test procedure including the char-
acterization tests and the aging tests are conducted based on four
LiFePO4 batteries. In Section 4, the model parameterization method is
presented, and the experimental results are performed to evaluate the
performance of the proposed model. In Section 5, a simplified model is
developed with satisfactory current estimation accuracy and less
parameterization effort. Finally, some conclusions, the advantages of
the proposed model, and the future work are given in Section 6.

2. Model development

2.1. RC network-based equivalent circuit model

The conventional ECM is mainly based on the RC network. Take the
first-order ECM as an example, it is generally comprised of a voltage
source Voc, an Ohmic resistance Ro and a RC network, which contains a
resistance Rp and a capacitance Cp connected in parallel, as shown in
Fig. 1.

Based on the Kirchoff’s law, the electrical behavior of the first-order
ECM can be expressed as

+ =C
dV
dt

V
R

Ip
p p

p (1)

+ + =V R I V VOC o p t (2)

where Vt denotes the battery terminal voltage, Vp denotes the over-
voltage across the RC network, and I denotes the load current (the
positive value represents charging and the negative value represents
discharging).

The battery terminal voltage is set as constant in the CV charging
mode, while the charging current decreases continuously with time. In
order to quantitatively describe the dynamic characteristic of the CV
charging current, it is essential to derive the mathematical expression of
the current in the CV mode. By substituting (2) into (1), the differential
equation is rewritten as

− − + − − =C d V V R I
dt

V V R I
R

I( )
p

t OC o t OC o

p (3)

where VOC denotes the open circuit voltage, and can be represented as a
function of SoC, i.e.:

=OCV f(SoC) (4)

where SoC can be further expressed as

∫
= +SoC t

η
( ) SoC(0)

I(t)dt
3600Ci

0
t

cap

i

(5)

where SoC(ti) is the SoC at time ti, SoC(0) is the SoC at initial time, I(t)
denotes the current at time t, Ccap denotes the battery capacity in Ah, η
denotes the coulombic efficiency, and η≈ 1 [11,33].

Based on (4) and (5), the variation of OCV with respect to time can
be expressed as

= =d
dt

d
d

d
dt

d
d

ηI t
C

OCV OCV
SoC

· SoC OCV
SoC

·
( )

3600 cap (6)

where I(t) is usually lower than C/2 during the CV charging process,
which means that the value of ηI(t)/(3600Ccap) is generally less than
0.000139 in the CV mode. Hence, the value of dSoC/dt is very small,
and dOCV/dt≈0 holds for the CV charging process.

Similarly, the variation of the impedance parameter can be con-
sidered negligible in the CV charging mode, i.e., dRp/dt≈ 0. In addi-
tion, dVt/dt=0 can be obtained since the battery terminal voltage
during the CV period is controlled constant.

Based on the aforementioned analysis, Eq. (3) can be simplified as

+
+

= −dI
dt

R R
R R C

I V V
R R C

o p

o p p

t OC

o p p (7)

Assuming that Vt, Voc and the impedance parameters (i.e., Ro, Rp and
Cp) are all known variables, the detailed expression of the CV charging
current can be solved as

= + −
+
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(8)

where I(0) denotes the current at the beginning of the CV mode.
Defining Ro+ Rp= a and (RoRpCp)/(Ro+ Rp)= b, Eq. (8) can be

simplified as

= + − −− −( )I t I e V V
a

e( ) (0) 1
t
b t OC t

b
(9)

2.2. The proposed equivalent circuit model for CV charging mode

For the system represented by (9), defining (Vt− Voc) as the system

Voc Vt

I
Ro

p

Cp

Fig. 1. The first-order ECM.

J. Yang, et al. Applied Energy 254 (2019) 113726

3



input and I as the system output, Eq. (9) can be considered as the sum of
the zero input response y1= I(0)e−t/b and the zero state response
y2= (Vt− Voc)(1− e−t/b)/a. For the zero input response y1, the value
decreases exponentially to zero with time. For the zero state response
y2, the value increases exponentially from zero to the steady state
(Vt− Voc)/a. It can be concluded from (9) that the variation rates of y1
and y2 are dependent on b, which can be considered as the time con-
stant of the system. Based on the above analysis, Eq. (9) can be re-
presented by an ECM containing one RL network, as shown in Fig. 2.

The electrical behavior of the proposed ECM can be expressed as

+ + =V R I L dI
dt

VOC eq eq t (10)

where Req is the equivalent resistance and Leq is the equivalent in-
ductance.

Based on the discussion in Section 2.1, dVoc/dt≈ 0 holds for the CV
charging mode, thus I can be solved as

= + − −− −( )I t I e V V
R

e( ) (0) 1
t

τ t OC

eq

t
τeq eq

(11)

where τeq is the equivalent time constant and τeq= Leq/Req.
By comparing (11) and (9), it is clear that the two equations have

the same form when satisfying a= Req and b= τeq, proving the effec-
tiveness of the proposed model structure. In addition, it can be con-
cluded that the proposed ECM shown in Fig. 2 contains less components
compared with the conventional one shown in Fig. 1, which in turn
leads to a lower parameterization effort.

For the CV charging mode, the battery terminal voltage remains
constant, while the load current decays nonlinearly with time, causing
the concentration gradient of lithium ions to decrease progressively to a
slight level when the CV charge ends [29,30]. Hence, the CV charging
current is closely related to the nonlinear electrochemical processes
occurred inside the battery. It can be concluded form (11) that the
dynamic characteristic of the CV charging current is mainly determined
by the time constant of the RL network. However, the estimated current
obtained based on the ECM shown in Fig. 2 cannot closely track the
measured value, which will be discussed in Section 4.2. In the con-
ventional ECM, the RC network is widely adopted to approximate the
nonlinear polarization effects in the time domain, and a higher number
of RC networks with different time constants are generally connected in
series to give a better approximation [34]. Hence, in order to accurately
describe the dynamic characteristic of the CV charging current, ex-
ponential functions with different time constants are employed together
to reproduce the battery electrochemical processes. Correspondingly,
the proposed ECM shown in Fig. 2 can be extended to a higher order
with multiple RL networks connected in parallel, as shown in Fig. 3.

For the ECM shown in Fig. 3, the equation of the branch current
through each RL network are similar to (11). In addition, according to
Kirchoff’s current law, the sum of branch currents flowing into the
node, i.e., point A in Fig. 3, is equal to the value of the total charging
current. Hence, the detailed expressions of each branch current and the
associated relationships are

⎧

⎨
⎩

= + − =

∑ =

− − −

=

I t I e e k n

I t I t

( ) (0) (1 ), 1, 2, ...,

( ) ( )

k k
V V

R

k
n

k1

t
τeq k t OC

eq k

t
τeq k,

,
,

(12)

where n is the order of the model, Ik(t) denotes the branch current
through each RL network, Req,k and τeq,k denote the equivalent re-
sistance and the equivalent time constant for each RL network, re-
spectively.

3. Experimental tests

3.1. Experimental setup

The batteries employed in this study are four 26,650 power cells,
which are numbered from #1 to #4. Four batteries are stimulated with
the same load current or power profiles for comparison and validation.
The key specifications of the investigated battery are listed in Table 1.

The tests are conducted on an 8-channel Arbin BT2000 battery cy-
cler with a voltage range of 0–5 V and a current range of −100 to
100 A. The voltage and current accuracy is± 0.02% for low power
and± 0.05% for high power applications. All four batteries are placed
in an air-conditioned room with a temperature range of 25 ± 2 °C, and
the sampling frequency of the data acquisition is set as 1 Hz.

3.2. Test procedure

The battery test procedure consists of two parts, i.e., the char-
acterization tests and the aging test. The objective of the character-
ization tests is to obtain the batteries’ capacity and SoC-OCV correla-
tion, so as to identify the impedance parameters of the ECM derived in
Section 2.2. The aging test is utilized to cycle the investigated batteries
to different aging states.

3.2.1. Characterization tests
In order to extract the battery information at different aging states,

the characterization tests are conducted after a certain number of aging
tests. The characterization tests in this study are composed of two parts:
the capacity test and the hybrid pulse power characterization (HPPC)
test.

The capacity test includes 5 charge-discharge cycles. In each cycle,
the battery is first charged at a constant current of 0.5C rate until the
battery terminal voltage reaches the cut-off value of 3.65 V, then a CV
mode is applied until the charging current reaches the cut-off value of
C/20. After resting for 1 h, the battery is discharged in a CC mode at
0.5C rate until the battery terminal voltage reaches 2.0 V. The rest
period between two cycles is 1 h. Finally, the battery’s capacity is cal-
culated as the mean value of the accumulative charge of 5 cycles.

It can be inferred from (12) that the input variable of the system
contains the battery OCV, which should be determined in advance. In
this study, the SoC-OCV correlation is obtained by the HPPC test. In the
HPPC test, the battery is first stimulated with a pair of discharge and
charge current pulses, with the amplitude of 2C and the duration of
10 s. Then, after resting for 60 s, the battery is incrementally dis-
charged/charged with the interval of 5% SoC at a constant current of
0.5C rate, this is followed by a 2 h relaxation period to reduce the po-
larization effects.

3.2.2. Aging tests
After the characterization tests, the investigated batteries are cycled

in the aging test. In each aging cycle, all four batteries are charged at a
constant current of 1C rate until the charge cut-off voltage (3.65 V) is
reached, then the CV charging mode is conducted until the current
reduces to C/20. After that, the batteries are discharged immediately in
a CC mode at 4C rate to the discharge cut-off voltage (2.0 V).

Voc

Req

Vt

Ieq

Fig. 2. Proposed RL network-based ECM.
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4. Model parameterization and verification

4.1. Model parameterization

The time-current series acquired during the CV charging period are
employed to identify the model parameters. In this study, all the time-
current series are extracted from the 5th cycle in the capacity test.
Specifically, the time-current series can be denoted as {(ti, Imea,i), i=1,
2, …, N}, where ti is the recorded time point, Imea,i is the measured
current value at ti, and N is the recorded data size. t1 and tN correspond
to the start point and the end point of the CV charging process, re-
spectively, and t1= 0.

The nonlinear least squares (NLS) algorithm is employed to fit the
measured time-current series, and the model parameters can be ob-
tained by solving the cost function as [35,36]

∑= ⎡

⎣
⎢ − ⎤

⎦
⎥

=

J θarg min (I (t ) I (t , ))
i

N

1
mea,i i est,i i

2

(13)

where Iest,i denotes the estimated current, θ denotes the vector of un-
known model parameters, and θ=[Req,1…Req,n, Leq,1…,Leq,n, I2(0)…
In(0)].

4.2. Model verification

In order to verify the feasibility of the proposed ECM and investigate
the influence of the number of the RL networks on the current esti-
mation accuracy, the CV data of battery #1 are used for the parameter
identification and the CV data of other batteries are used for the model
verification. Fig. 4 demonstrates the estimation results and the absolute
values of errors for battery #2 at different aging states (i.e., new, 150
cycles, 900 cycles and 2050 cycles). It is worth noting that the current
generated by the proposed 1st-order ECM is equal to that estimated by
the conventional 1st-order RC network-based ECM. In this study, the
ECMs containing more than 3 RL networks are not considered due to
the high parameterization effort. The obvious fluctuations are observed
in the obtained estimation errors, as shown in Fig. 4(b), (d), (f) and (h),
which are mostly due to the measurement noise. Besides, it can be seen
from Fig. 4 that the estimation results based on the proposed ECMs can
generally track the measured current at different aging states. More-
over, the current estimation accuracy is improved significantly from the
proposed 1st-order ECM (or the conventional 1st-order RC network-
based ECM) to the 2nd-order ECM. However, the error curves of the
2nd-order ECM and the 3rd-order ECM are almost overlapped with each
other. This indicates that no obvious improvement is observed from the

2nd-order model to the 3rd-order model.
In order to quantitatively assess the estimation results of the pro-

posed ECMs, two evaluation criterions, including the root mean-
squared error (RMSE) and the R-square (R2), are calculated as

∑= −
=

RMSE 1
N

(y y )
i 1

N

mea,i est,i
2

(14)

∑= −
∑ −

∑ −
==

= =

R 1
(y y )

(y ȳ )
, ȳ 1

N
y2 i 1

N
mea,i est,i

2

i 1
N

mea,i mea
2 mea

i 1

N

mea,i
(15)

where N denotes the data size, ymea,i and yest,i denote the measured and
the estimated values, respectively, y̅mea denotes the mean value of the
measured data. Specifically, a lower RMSE (closer to 0) and a larger R2

(closer to 1) indicate a more accurate estimation result.
Fig. 5 demonstrates the calculated evaluation criterions of the

model current estimation for battery #2 at different aging states. The
obvious reduction of RMSE and increase of R2 are observed from the
1st-order ECM to the 2nd-order ECM. By contrast, the variations of the
evaluation criterions are much smaller from the 2nd-order ECM to the
3rd-order ECM. These phenomena are in accordance with the estima-
tion results depicted in Fig. 4. In addition, it can be seen from Fig. 5(b)
that both the R2s of the 2nd-order ECM and the 3rd-order ECM are close
to 1, indicating the high current estimation accuracy of these two
models.

In order to further verify the applicability of the proposed model,
the obtained RMSE and R2 of battery #2, #3 and #4 are listed in
Table 2. As can be seen, the aging states of all three batteries have no
significant influence on the estimation accuracy of the proposed ECMs.
In addition, the parameters identified from one battery (battery #1) can
be applied to estimate the charging current of other three batteries with
satisfactory performance. Besides, it can be found from Table 2 that the
model accuracy is closely related to the model structure. Take battery
#2 as an example, for the 2nd-order model, the RMSE is reduced by
approximately 75.4% overall and with 3 more model parameters in
comparison to the 1st-oder model. Moreover, the overall RMSE is only
reduced by approximately 10.5% from the 2nd-oder model to the 3rd-
order model, but the model parameters are increased from 5 to 8. This
phenomenon can also be verified by the estimation results of battery #3
and battery #4. It can be concluded that the higher number of RL
networks leads to the better current estimation performance; however,
at the expense of the higher parameterization effort. Hence, considering
the tradeoff between the model fidelity and the parameterization effort,
the proposed 2nd-order ECM is the best choice to characterize the CV
charging current.

On the other hand, the mathematical function proposed in Ref. [30]
is also conducted to make a comparison. Specifically, the mathematical
function is expressed as

= +−I (t) Ae CBt (16)

where A, B and C are the function coefficients, which can be identified
by the NLS algorithm described in Section 4.1.

Table 3 shows the calculated evaluation criterions of the current
estimation results by (16). By comparing Tables 2 and 3, it demon-
strates that for all three tested batteries, the proposed ECM containing
more than one RL network can provide more accurate estimated cur-
rent, which further proves the superiority of the proposed ECM in terms
of the estimation accuracy.

5. Model simplification

Based on the aforementioned analysis, it can be concluded that the
proposed ECM containing 2 RL networks can ensure the sufficient ac-
curacy of current estimation. Table 4 gives the identified model para-
meters for battery #1 at different aging states.

According to (12), it is clear that the values of (Vt− Voc) and Req,k

Voc Vt

I
Req,2 Leq,2

eq,1 eq,1

Req,n Leq,n

I2A

In

I1

Fig. 3. Proposed nth-order ECM.

Table 1
Specifications of investigated batteries.

Chemistry LiFePO4

Nominal capacity (at C/5 rate) 2.5 Ah
Nominal voltage 3.2 V
Charge cut-off voltage 3.65 V
Discharge cut-off voltage 2.0 V
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directly influence the zero state current response. The value of Voc is
generally close to the battery terminal voltage during the CV charging
mode, leading to a low (Vt− Voc) value (approximate 0.296 V). It can
be observed from Table 4 that the estimated equivalent resistances,
especially Req,2, possess relative high values. Hence, the (Vt− Voc)
(1− e−t/τeq,k)/Req,k (k=1 and 2) part in the estimated current can be
neglected, which means that the fitting function of the 2nd-order ECM
can be simplified as

= + −− −I t I e I I e( ) (0) [ (0) (0)]
t

τ
t

τ1 1eq eq,1 ,2 (17)

It can be found from (17) that only three model parameters are required
to be identified, i.e., I1(0), τeq,1 and τeq,2.

In order to assess the performance of the simplified model, Fig. 6

shows the estimation results and the absolute values of errors at dif-
ferent aging states. Specifically, the model parameters are identified
based on the test data of battery #1, and the estimation results based on
the test data of battery #2 are demonstrated as examples. In addition,
the evaluating criterions of battery #2, #3 and #4 are listed in Table 5.
As can be seen, the estimated current curve matches well with the
measured results at different battery aging states. By comparing Tables
2 and 5, it can be observed that the current estimation accuracy is
slightly decreased from the 2nd-order model to the respective simpli-
fied one, due to the neglect of the (Vt− Voc)(1− e−t/τeq,k)/Req,k (k=1
and 2) part. Compared with the 1st-order model, the estimation accu-
racy of the simplified model is significantly improved with the same
number of model parameters. Hence, it can be concluded that for the

(a) Estimation results at new state (b) Absolute values of errors at new state 

(c) Estimation results after 150 cycles (d) Absolute values of errors after 150 cycles 

(e) Estimation results after 900 cycles (f) Absolute values of errors after 900 cycles 

(g) Estimation results after 2050 cycles (h) Absolute values of errors after 2050 cycles 
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Fig. 4. Current estimation results and absolute values of errors for the proposed ECMs.

J. Yang, et al. Applied Energy 254 (2019) 113726

6



simplified 2nd-order model, the number of model parameters is re-
duced, yet the current estimation accuracy can still be guaranteed.

6. Conclusion

A novel RL network-based ECM is proposed in this paper, which can
capture the dynamic characteristic of the charging current at CV mode.
According to the current expression derived upon the conventional RC
network-based ECM, a battery ECM containing one RL network is first
introduced. Secondly, in order to improve the model fidelity, the pro-
posed model is generalized to a higher order with multiple RL networks

connected in parallel with each other. Thirdly, based on the analysis of
the identified model parameters, a simplified 2nd-order model is de-
veloped to decrease the parameterization effort. Lastly, the NLS algo-
rithm is employed to identify the model parameters, and four LiFePO4

batteries are tested to validate the proposed model. Comparison results
indicate that a higher number of RL networks lead to a more accurate
current estimation, however, at the expense of higher parameterization
effort. Besides, the simplified 2nd-order model can be a good candidate
considering the tradeoff between the model accuracy and complexity.

The proposed model has several advantages desired for the BMS.
First, it contains less parameters compared to the conventional RC
network-based ECM with the same order, and thus requires a lower
parameterization effort. For the simplified model, this superiority is
enhanced since the number of identified model parameters is further
reduced. In addition, due to the electrical characteristic of the RL net-
work, the proposed model can capture the dynamics of the CV charging
current precisely. According to our previous work [31], the dynamic
characteristic of the charging current during the CV period is closely
related to the battery aging state. Hence, with the proposed model, it is
possible to explore an effective way to estimate the battery SoH.

In this paper, only LiFePO4 batteries are adopted in the test, and the
test temperature is maintained around 25℃. Hence, future work will be
focused on verifying the proposed model with different battery che-
mistries at different temperatures. In addition, a novel battery SoH
estimation method based on the developed model will be presented.
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Table 2
Calculated evaluation criterions of the current estimation results by the proposed ECMs.

Battery Number Model Structure New 150 Cycles 900 Cycles 2050 Cycles

RMSE(mA) R2 RMSE(mA) R2 RMSE(mA) R2 RMSE(mA) R2

#2 1st-order 29.6 0.9841 29.7 0.9844 32.0 0.9829 23.5 0.9913
2nd-order 6.6 0.9992 7.7 0.9990 8.7 0.9987 5.4 0.9995
3rd-order 6.4 0.9993 6.5 0.9992 7.3 0.9991 5.0 0.9996

#3 1st-order 38.2 0.9741 31.5 0.9825 31.7 0.9833 27.1 0.9883
2nd-order 9.0 0.9985 8.7 0.9987 11.5 0.9978 13.0 0.9973
3rd-order 6.9 0.9992 7.4 0.9990 10.3 0.9982 12.9 0.9973

#4 1st-order 29.6 0.9843 35.2 0.9783 31.5 0.9834 22.6 0.9920
2nd-order 10.0 0.9982 10.1 0.9982 11.3 0.9979 7.6 0.9991
3rd-order 9.7 0.9983 9.2 0.9985 10.1 0.9983 6.8 0.9993

Table 3
Calculated evaluation criterions of the current estimation results by (16).

Battery
Number

New 150 Cycles 900 Cycles 2050 Cycles

RMSE
(mA)

R2 RMSE
(mA)

R2 RMSE
(mA)

R2 RMSE
(mA)

R2

#2 18.3 0.9939 18.4 0.9940 17.9 0.9946 14.2 0.9968
#3 19.1 0.9935 18.7 0.9938 18.9 0.9941 19.2 0.9941
#4 19.2 0.9934 19.7 0.9932 18.8 0.9941 14.8 0.9966

Table 4
Identified model parameters for battery #1.

New 150 cycles 900 cycles 2050 cycles

τeq,1 (s) 35.0047 29.4680 41.0657 71.1882
Req,1 (Ω) 3.1164 2.7898 2.6872 3.0705
τeq,2 (s) 237.2236 235.9098 300.3323 401.5255
Req,2 (Ω) 1.4043×103 1.6499×103 1.8870×103 2.4041×103

I2(0) (A) 0.7854 0.8169 0.8381 0.8530
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