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H I G H L I G H T S

• Derived the expression of CV charging current based on ECM.

• Introduced time constant of CV charging current to estimate battery SoH.

• Established a quantitative correlation between current time constant and battery SoH.

• Discovered that current time constant is a logarithmic function of fitted data size.

• Employed uncompleted CV charging data to estimate battery SoH.
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A B S T R A C T

Battery state-of-health (SoH) estimation is a critical function in a well-designed battery management system
(BMS). In this paper, the battery SoH is detected based on the dynamic characteristic of the charging current
during the constant-voltage (CV) period. Firstly, according to the preliminary analysis of the battery test data,
the time constant of CV charging current is proved to be a robust characteristic parameter related to the battery
aging. Secondly, the detailed expression of the current time constant is derived based on the first order
equivalent circuit model (ECM). Thirdly, the quantitative correlation between the normalized battery capacity
and the current time constant is established to indicate the battery SoH. Specifically, for the uncompleted CV
charging process, the logarithmic function-based current time constant prediction model and the reference
correlation curve are established to identify the battery capacity fading. At last, experimental results showed that
regardless of the adopted data size, the correlation identified from one battery can be used to indicate the SoH of
other three batteries within 2.5% error bound except a few outliers.

1. Introduction

Due to the high energy and power density, lithium-ion batteries
have proved to be a promising candidate as the energy storage system
in electric vehicles (EVs) and consumer electronics [1–3]. To ensure the
safety and reliability of battery systems, the basic battery states, i.e.,
state-of-charge (SoC) [4,5], state-of-power (SoP) [6], and state-of-
health (SoH) [7,8], should be monitored continuously by the battery
management system (BMS). Hence, the accurate, robust and practical
battery state estimation is one of the key functions of a BMS. However,
batteries are sophisticated electrochemical devices with various non-
linear characteristics. It is difficult to estimate the above states with
high accuracy and strong robustness. Especially for the SoH estimation,
the complicated aging mechanism and the uncertain external

conditions (such as temperature and load profile) make it a more
challenging task [9–11].

1.1. Review of the literature

To describe the deterioration of the power and the energy capability
of the battery, the quantitative definition of the SoH is generally based
on the impedance growth and/or the capacity loss. Hence, the SoH
estimation can be converted to the identification of the present im-
pedance and/or capacity.

Abundant research work has been conducted to seek the accurate
impedance identification, ranging from offline tests, such as active/
passive impedance spectroscopy [12,13], to online estimation algo-
rithms, such as extended Kalman filter (EKF) based and least squares
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based methods [14–17].
The battery capacity can generally be determined by two groups of

approaches: the model-based and the correlation-based techniques.
According to the employed battery model, the model-based tech-

niques can be further classified into two categories, namely, the black
box model-based and the equivalent circuit model (ECM)-based tech-
niques. For the black box model-based techniques, artificial neural
networks [18,19], support vector machine [20,21], sample entropy
[22,23] and sparse bayesian modeling [24] are generally employed to
estimate the capacity fade in batteries. The advantage of these ap-
proaches is that the exact knowledge of battery aging mechanism is not
considered, and only external behaviors of battery (e.g., voltage, cur-
rent, and temperature) are required. Therefore, they are relatively
simple and straightforward. However, the accuracy of the black box
model is closely dependent on the quantity and quality of training data,
which requires extensive offline training investigations [25]. By con-
trast, the ECM describes battery behaviors through a series of specific
electric elements such as impedance components and voltage sources.
The battery capacity can be estimated alone or together with other
model parameters (e.g. impedance parameters, open circuit voltage
(OCV)) and SoC through a variety of filters or observers, such as EKF
[26,27], H-infinity filter [28], and recursive least squares algorithm
[29]. These methods can theoretically estimate the capacity and other
parameters as precisely as the battery is modeled. However, it has to be
noted that three disadvantages exist concerning this type of technique.
Firstly, a sufficient time is required to ensure the estimated capacity
converge to the stable value [26]. Secondly, the accuracy of the esti-
mation results strongly depends on the precision of the battery model,
while an accurate battery model can significantly increase the compu-
tational cost [30]. Thirdly, the cross interference terms among the es-
timated variables can also compromise the estimation performance in
terms of the numerical stability and accuracy [31].

From the perspective of correlation-based techniques, the battery
capacity is indirectly determined based on the specific characteristic
parameter, and the mapping relationship between capacity degradation
and the related parameter variation should be established in advance.
Typically, there exists several methods to derive the characteristic
parameter from the dynamic discharging process [32,33]. However,
besides the aging state, the battery model parameters are generally
changeable with SoC, temperature and C-rate of the load current under
the operating condition [12], and the accuracy of SoH estimation will
be reduced without considering these influences. Ref. [32] selected the
solid electrolyte interphase (SEI) resistance to predict the battery re-
maining capacity by the appropriate correlation function. This ap-
proach was found to be insensitive to discharge C-rate and effective in
estimating the battery remaining capacity. Specifically, the average SEI
resistance with respect to the specific SoC range was utilized to reduce
the influence of SoC. However, the battery parameters are generally
identified online from dynamic operating conditions with a random SoC
range. Thus, obtaining the average value covering the specific SoC
range in practice is a challenging task. Ref. [33] developed a formula to
determine the battery capacity based on the estimated diffusion capa-
citance. The temperature dependency of diffusion capacitance was
considered to improve the robustness of the fitting function. None-
theless, extensive laboratory investigations were required to obtain an
accurate correlation. Some methods were developed based on the re-
laxation data after the current interruption. With this kind of methods,
the battery capacity can be derived based on the change in the OCV
before and after a driving event [34,35]. Since only the SoC-OCV cor-
relation was employed as a characteristic parameter, which was nearly
unchanged by the battery aging state, these methods enabled a high
accuracy of capacity estimation over the battery lifetime. However, the
long-time relaxation period is required for the precise OCV measure-
ment, which is not suitable for real applications. Recently, many re-
searchers have concentrated on predicting the battery capacity based
on the characteristic parameter extracted from the constant-current

constant-voltage (CCCV) charging data. One of the commonly used
methods is based on the incremental capacity (IC) or the differential
voltage (DV) analysis [36–38]. With this type of technique, the battery
aging mechanisms (i.e., loss of lithium inventory and loss of active
material) can be identified by analyzing the peaks on the IC or DV curve
[39]. However, since all the peaks on the IC or DV curve lie within the
plateaus of the OCV curve which is vulnerable to the measurement
noise, it is difficult to identify the distinct peaks directly from the
measured data set. Meanwhile, the IC and DV curves are generally
derived from the pseudo or real OCV curve. It requires completely
charging/discharging the battery with micro currents or recording the
battery terminal voltage after a long-time relaxation process at SoC
points covering the entire range. Both methods are time-consuming and
thus are not suitable for the on-board application [39]. Ref. [40] es-
tablished a quantitative correlation between battery capacity and IC
peak value, and the support vector regression was employed to extract
the IC peak value. Ref. [41] considered the normalized location interval
of the DV curve as the characteristic parameter, and correlated it with
the capacity loss. The improved center least squares method was em-
ployed to extract the DV curve. These approaches utilized the battery
charging data directly to detect the battery capacity fading, and showed
robust performances against the measurement noise and data size. It
has to be noted that better results would be expected using the OCV
curve to obtain IC and DV curves, instead of the charging data [39,42].
In addition, because of the extensive computational power required, the
robust parameter extraction algorithm employed in these methods is
generally not applicable for the on-board implementation. Besides the
IC or DV based methods, Ref. [43] calculated the battery pack capacity
by transforming the charging voltage curve during the constant-current
(CC) charging period, and only simple mathematical calculations were
needed. However, the authors made the critical assumption that the
battery should experience a complete CC charging cycle, which rarely
happens in real applications, especially in EVs. Ref. [44] used the vol-
tage-capacity rate curve to identify the battery capacity, and the genetic
algorithm was carried out to find the optimum transformation para-
meter. Nevertheless, the performance of the voltage-capacity rate curve
is sensitive to the sampling frequency and the measurement noise
[40,45]. Moreover, the adopted genetic algorithm is still complicated
for the on-board applications. Different from the methods described
above, Ref. [46] recognized the battery capacity loss according to the
constant-voltage (CV) charging data. The simple mathematical function
was proposed to simulate the battery current behavior during the CV
charging period, and an obvious linear correlation between the model
parameter and the battery capacity was exploited. Although the ver-
ification results show that the simulated CV current matches well with
the experimental data, the parameters in the developed function had no
explicit physical meaning. Besides, a complete CV charging period is
required to determine the accurate battery capacity loss, which is in-
feasible from a practical point of view.

1.2. Contributions of the paper

In this paper, the battery capacity fading is detected through the
dynamic characteristic of the charging current during the CV period.
The main contributions of this paper are:

(1) The time constant of CV charging current is firstly introduced to
indicate the battery aging state. Compared with the CV charging
time, the current time constant is a more robust characteristic
parameter related to the battery aging. Based on the employed
ECM, the CV charging current is expressed in the recursive form to
obtain the detailed expression of the current time constant.

(2) An online battery SoH estimation method is developed based on the
quantitative correlation between the normalized battery capacity
and the current time constant. Experimental results show that there
exist a strong linear regression between the normalized battery

J. Yang et al. Applied Energy 212 (2018) 1589–1600

1590



capacity and the current time constant. Besides, the correlation
function extracted from one battery is able to evaluate the SoH of
other three batteries with less than 2.5% absolute error except a few
outliers.

(3) The uncompleted CV charging data is utilized to estimate battery
SoH. Firstly, the logarithmic function-based prediction model is
established to predict the reference current time constant. Then, the
battery SoH can be estimated by substituting the reference time
constant into the reference correlation curve. Comparison results
demonstrate the superiority of the proposed method in terms of its
robustness to data size.

2. Experimental tests and CV charging current analysis

2.1. Experimental setup

The battery test bench includes the tested batteries, an Arbin
BT2000 cycle-based tester, and a host computer with MITS Pro software
for experiment control and data storage, as shown in Fig. 1. Four li-
thium iron phosphate (LiFePO4) IFR26650PC batteries from Valence
are adopted under test. All four batteries, which are numbered from #1
to #4, are cycled with the same current excitations for comparison and
validation. The specific parameters of the tested battery are listed in
Table 1. The Arbin BT2000 cycle-based tester is used to charge and
discharge the batteries and collect the test data. The voltage and current
measurement ranges are 0–5 V and±100 A, respectively. The current
measurement error in the battery tester is less than 0.05%, and the
initial SoC can be obtained precisely from the test platform. Thus, it is
feasible to assume that the accumulative battery capacity calculated
through the recorded current can be considered as the reference value
for comparison.

2.2. Test procedure

The test procedure, as shown in Fig. 2, is designed to generate rich
excitations for the tested batteries. It mainly includes two parts: the
aging and the characterization tests. All of the tests are conducted at

room temperature (the ambient temperature is 25 ± 2 °C), and the
measured data sets, including current, voltage and temperature, are
recorded with the sampling frequency (fs) of 1 Hz.

The aging tests are conducted to explore the aging mechanism of the
battery, e.g., loss of lithium inventory, loss of active material and
Ohmic resistance increase [9]. It cycles until the battery reaches the
end-of-life (EoL) condition (i.e., the battery’s capacity reduces to 80% of
its nominal capacity [32]). During each aging cycle, all four batteries
are at 1C rate for CCCV charge and at 4C rate for CC discharge with no
rest periods.

The characterization tests are performed periodically after certain
aging cycles, which are aimed to extract battery parameters and acquire
the corresponding variation tendency along with aging. As illustrated in
Fig. 2, the characterization tests consist of a capacity test, a hybrid pulse
power characterization (HPPC) test and an Urban Dynamometer
Driving Schedule (UDDS) test. The battery capacity is derived from the
capacity test comprising 5 charge-discharge cycles. Each cycle includes
a 1/2C rate CCCV charge (CC-CV transition voltage: 3.65 V, cutoff
current: 1/20C) and a 1/2C rate CC discharge processes. Finally, the
battery capacity is calculated as the mean value of five cycles. The
purpose of the HPPC test is to discharge/charge the battery to a certain
SoC and excite the batteries dynamically. In the HPPC test, the battery
is discharged/charged at a 5% SoC interval with 1/2C rate, and a 2 h
rest is applied after each SoC variation operation. As shown in Fig. 3,
the HPPC pulses include one pair of discharge and charge pulses. The
magnitude and duration of each current pulse are 2C and 10 s, re-
spectively. The rest period between each discharge and charge pulses
(T1 in Fig. 3) is 40 s, and the rest period after current pulses (T2 in
Fig. 3) is 60 s. The objective of the UDDS test is to validate the

Tested batteries

Arbin BT2000Host computer

Current

Voltage

Temperature 

TCP/IP

Fig. 1. Configuration of the battery test bench.

Table 1
Specifications of the tested battery.

Type LiFePO4

Nominal capacity 2.5 Ah
Nominal voltage 3.2 V
Charge cutoff voltage 3.65 V
Discharge cutoff voltage 2.0 V

Aging test

CCCV charging test

CC discharging test

Characterization test

Y

N

Capacity test

HPPC test

UDDS test Reach certain 
aging cycles?

Reach EoL? N

Y

End test

Fig. 2. Battery aging test procedure.
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Fig. 3. The current profile of HPPC pulses.
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effectiveness of identified model parameters. In the UDDS test, the in-
itial SoC is 90% and the cycle is repeated without rest until the SoC
reaches 20%.

2.3. Preliminary CV charging current analysis

Fig. 4 shows the CV charging time of all four batteries after different
aging cycles. For this study, all the CV charging data is extracted from
the 5th cycle in the capacity test. It can be seen from Fig. 4 that the CV
charging time (TCV) generally possesses the increasing tendency with
the growing aging cycles. It indicates that the battery aging state can be
directly investigated from the CV charging time. In order to quantify the
correlation between the battery capacity and TCV, the normalized ca-
pacity (Cn) of battery #1 (battery #1 is considered as the reference
battery in this paper) is plotted versus the corresponding TCV in Fig. 5.
The normalized capacity, as defined in (1), is adopted in this paper due
to the inconsistency among different batteries.

=C C
Cn

actual

initial (1)

where Cactual is the battery capacity obtained after each characterization
test, and Cinitial is the battery capacity derived after the first char-
acterization test.

It can be seen from Fig. 5 that Cn shows a monotonically decreasing
relationship with TCV. The solid line in Fig. 5 denotes the fitted linear
correlation between Cn and TCV. Fig. 5 demonstrates that with the
complete CV charging process, the battery capacity can be obtained by
substituting TCV into the correlation established beforehand. However,
it has to be noted that some batteries in the practical application cannot
reach the cut-off current value due to the uncompleted charging pro-
cess. In addition, the noise disturbance on the current measurement

may also cause the battery to finish the CV period earlier. Compared
with the complete CV charging process, the shorter TCV would be ob-
tained from either of the above two scenarios, which in turn causes a
significant SoH estimation error. For example, TCV extracted after 2000
cycles of battery #1 is 1158 s, and the corresponding Cn should be
0.8782 (i.e., point A in Fig. 5). Nevertheless, if the CV charging process
is terminated when TCV equals 1000 s, the estimated Cn is 0.9195 when
substituting TCV into the correlation curve, as illustrated in Fig. 5. Thus,
TCV is highly sensitive to the external interference, and a more robust
method is needed.

The CV charging current of battery #1 after different aging cycles
are plotted in Fig. 6. It can be observed from Fig. 6 that with the
growing aging cycles, the charging current reduces to the cut-off value
at a slower variation rate, which in turn leads to a longer duration of the
CV period. Since the current variation rate is closely associated with the
relevant time constant, the current time constant (τI) for the CV char-
ging period can thereby be adopted to investigate the battery aging
state. Unlike TCV, which should be obtained when the whole CV char-
ging process is completed, τI can be extracted from the partial CV
charging data, which will be discussed in great detail in Section 4.2.
Hence, τI is a more robust characteristic parameter related to the bat-
tery aging, in comparison to the CV charging time.

3. Current time constant identification

3.1. Battery model and parameter identification

A proper battery model plays an important role in a high-perfor-
mance BMS. Theoretically, the dynamic characteristic of a battery can
be accurately described by the ECM with infinite resistor-capacitor (RC)
networks [47]. However, this is an impractical battery model because
of the heavy computational effort. Hence, considering the tradeoff be-
tween the model fidelity and computational complexity, the first order
ECM is adopted in this paper.

The architecture of the first order ECM is shown in Fig. 7. It com-
prises a voltage source which represents the OCV, an Ohmic resistance
(Ro) and an RC network (Rp//Cp). It should be noted that the above
model parameters are generally represented as functions of SoC and
temperature (T). Besides, the polarization resistance (Rp) and OCV also
depend on the C-rate of the load current (CI) [12] and hysteresis effect
H [48], respectively, i.e.:

= = =

=

V V SoC T H R R SoC T C C C SoC T

R R SoC T

( , , ), ( , , ), ( , ),

( , )

OC OC p p I p p

o o (2)

where Cp represents the polarization capacitance.

Cycles
150 450 900 1500 1800 2100

C
V

 c
ha

rg
in

g 
tim

e 
(s

)

0

200

400

600

800

1000

1200

1400
Battery #1
Battery #2
Battery #3
Battery #4

Fig. 4. Comparison of CV charging time for all four batteries.
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The electrical behavior of the first order ECM can be expressed as

+ =C
dV
dt

V
R

Ip
p p

p
L

(3)

+ + =V R I V VOC o L p t (4)

where Vt represents the battery terminal voltage, Vp represents the
voltage across the RC network, VOC represents the OCV, and IL is the
load current, a positive value represents the charging scenario and a
negative value represents the discharging scenario.

Based on (3) and (4), the transfer function of the first order ECM in
the Laplace domain can be expressed as

=
−

=
+

+ +
H s I s

V s V s
R C s

R R R R C s
( ) ( )

( ) ( )
1L

t oc

p p

o p o p p (5)

By means of the z-transform, Eq. (5) yields

=
−

=
− −

− − + − −
H z I z

V z V z
z T R C

R z T R C R T R C
( ) ( )

( ) ( )
exp( / )

[ exp( / )] [1 exp( / )]
L

t oc

s p p

o s p p p s p p

(6)

where Ts is the sampling period and is equal to 1 s in this paper.
This function can be rewritten as

= + − + −− − −I I θ V V θ V V θ( ) ( )L k L k t k oc k t k oc k, , 1 1 , , 2 , 1 , 1 3 (7)

where

= − − − −
=
= − −

θ T R C R R T R C
θ R
θ R T R C

exp( / ) ( / )[1 exp( / )]
1/

(1/ )exp( / )

s p p p o s p p

o

o s p p

1

2

3 (8)

The regression form of (7) can be expressed as

=I φ θL k k, (9)

where

= − −
=

− − −φ I V V V V
θ θ θ θ

[ ]
[ ]

k L k t k oc k t k oc k
T

, 1 , , , 1 , 1

1 2 3 (10)

Among the parameters in (10), IL and Vt can be measured directly,
and VOC can be obtained through a lookup table, which is normally
identified by the HPPC test in advance. Besides, the impedance para-
meters (Ro, Rp and Cp) can be obtained by solving (9) with the discrete-
time least squares (DT LS) method, which is widely implemented in the
real applications. The algorithmic procedure of the DT LS method is not
detailed in this paper, but can be referred to Ref. [49].

3.2. Expression of current time constant

In order to analyze the kinetic characteristic of the CV charging
current, the detailed expression of the load current is needed.

Since Vp cannot be measured directly, the removal of Vp term from
(3) and (4) is desired in order to obtain the current expression. Hence,
substituting (4) into (3), the differential equation can be rewritten as

= ∂ + − −R I C R X V V R I( )p L p p t t OC o L (11)

where vectors ∂t and X are defined as

∂ = ⎡⎣ ⎤⎦
= − − −X I R, [1 1 ]t

dV
dt

dV
dt

dR
dt

dI
dt

T
L o

t OC o L
(12)

Since the battery terminal voltage is controlled constant during the
CV period, the value of dVt/dt can be considered as 0.

Considering (2), the variation of Voc and Ro with respect to time can
be further expressed as

⎧
⎨
⎩

= + +

= +

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

· · ·

· ·

dV
dt

V
SoC

dSoC
dt

V
T

dT
dt

V
H

dH
dt

dR
dt

R
SoC

dSoC
dt

R
T

dT
dt

OC OC OC OC

o o o
(13)

In addition, Eq. (13) can be simplified considering the following
assumptions:

(1) dSoC/dt can be further express as IL/(3600Ccap) (where Ccap is the
capacity of the battery in Ah). Assuming that the battery is charged
by a 2C constant current (generally less than this value in most
applications [42], especially during the CV period), the value of
dSoC/dt is IL/(3600Ccap)= 2/3600=0.00056, which is very small.
Hence, dSoC/dt≈ 0 holds for normal charging conditions.

(2) Depending on the thermal management in the BMS, the battery
temperature should be controlled in a proper range and the relevant
variation should be slow, thus dT/dt≈ 0 can be obtained [50].

(3) Unlike the dynamic discharging process, the charging process is
relatively simple and predictable. Hence, the model fidelity can be
guaranteed by using the charging SoC-OCV relationship, and thus
the hysteresis effect can be neglected, i.e., dH/dt≈ 0.

Based on the aforementioned analysis, dVoc/dt≈ 0 and dRo/dt≈ 0
hold for the charging condition, thus (11) can be rewritten as

+
+

= −dI
dt

R R
C R R

I V V
C R R

L p o

p p o
L

t OC

p p o (14)

where Vt− VOC is considered as a constant item during one sampling
period, and the impedance parameters (Cp, Rp and Ro) can be identified
in advance through the algorithms mentioned above. Based on the
general solution of the first order linear differential equation, IL can be
solved as

∫
∫ ∫ ∫

= −

+ − ⎡
⎣

− ⎤
⎦

( )
( ) ( )

I I bdt

bdt V V bdt c dt

exp

exp ( )exp

L L t

t OC

, 0

(15)

where IL t, 0 is the initial load current, b=(Rp+ Ro)/(CpRpRo), and
c= CpRpRo. Defining tk= t0 and tk+1=t0+ Ts, Eq. (15) can be simpli-
fied as

= − + − − −+I I bT V V d bTexp( ) [( )/ ][1 exp( )]L k L k s t k OC k s, 1 , , , (16)

where IL,k and IL,k+1 represent the load current at time tk and tk+1,
respectively, and d= Rp+ Ro.

In the system expressed by (16), Vt-VOC can be regarded as the
system input, and the load current IL is considered as the system re-
sponse. If the system input is zero, the system response will decrease to
36.79% of its initial value when Ts=1/b. Similarly, for an increasing
step input, if the initial current equals 0, the system response will reach
63.21% of its stable value when Ts=1/b. Hence, it can be concluded
that the time constant for the CV charging current can be expressed as

= =
+

τ
b

C R R
R R

1
I

p p o

p o (17)

3.3. Parametric sensitivity to sampling frequency

The sampling frequency is crucial for the performance of DT LS
method. Without considering the limitation of on-board storage and

OCV

Ro

Vt

IL

Rp

Cp

Vp

Fig. 7. The first order ECM.
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computation capabilities, the rapid sampling is normally desired so that
the information on the fast dynamics can be captured [51]. However,
the high sampling frequency will result in the eigenvalue being close to
the unit circle in the z-domain, which can affect the stability for para-
meter identification [52]. Hence, the sensitivity of τI to fs is worth in-
vestigating.

Generally, the location of the eigenvalue in the z-domain can be
expressed as

=z λTexp( )s (18)

where λ is the eigenvalue of the system, and |λ|= 1/τI.
Based on (18), the sensitivity of τI with respect to eigenvalue loca-

tion in the z-domain is expressed as [49]:

= ∂
∂

= =S z
τ

τ
z λ T

τ f1
| |z

τ

I

I

s
I s

I

(19)

It can be inferred from (19) that the higher sampling frequency
yields higher sensitivity of identified τI. In a practical BMS, the sampling
frequency can be 100 Hz, and τI identified after 2300 cycles is 233.8 s.
Based on (19), the sensitivity can be as high as 23,380, which indicates
that τI estimation is extremely sensitive to the eigenvalue location.
Hence, to guarantee a good numerical stability, the sampling frequency
in real application is recommended to limit to lower than a certain
level.

3.4. Battery model verification

To verify the accuracy of the identified model parameters and the
derived current expression during the CV charging period, the com-
parison results of battery #1 after 150, 1500 and 2200 cycles are shown
in Fig. 8. Two evaluation criterions, including the Root Mean-Square
Error (RMSE) and the R-square (R2), are employed to evaluate the
waveform similarity, as listed in Table 2. The definitions of RMSE and
R2 are described as
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where yexp,k and yest,k denote the experimental and the estimated values,
respectively, yexp is the mean value of the experimental data, and n is the
data size.

It can be inferred from (20) and (21) that a lower RMSE (closer to 0)
and a larger R2 (closer to 1) indicate a better fitting performance. It can
be concluded from Fig. 8 and Table 2 that the estimated current mat-
ches well with the measured charging current, which confirms that the
extracted parameter set and the derived current expression can describe
the transient behavior of the CV charging current with high fidelity.

4. SoH estimation based on the correlation between Cn and τI

4.1. Correlation identified from the complete CV charging data

Based on (16) and (17), τI can be identified from the CV charging
data. Taking the data of battery #1 as the benchmark, Cn is plotted
versus the corresponding τI in Fig. 9. It can be seen from Fig. 9 that Cn

shows a monotonically decreasing relationship with τI. To quantita-
tively measure the degree of the linear relationship between Cn and τI,
the correlation coefficient, or the Pearson product-moment correlation
coefficient, is adopted in this paper. It can be described by (22) [38,53].
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where x and y correspond to Cn and τI, respectively, and x and y

represent the mean value of Cn and τI, respectively. The range of rxy is
[−1, 1], where close to +1 indicates a strong positive correlation, close
to −1 indicates a strong negative correlation, and close to 0 indicates a
weak or totally missing correlation.

The correlation coefficient between Cn and τI of battery #1 is
−0.9880, thus the linear function, as shown in (23), is employed to fit
the obvious linear relationship between these two values.

= +C a τ bn I1 1 (23)

where a1 and b1 are the fitting function coefficients which can be
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Fig. 8. Comparison between measured and estimated CV charging current after different
cycles.

Table 2
Evaluation criterions of estimation performance after different cycles.

Cycles RMSE R2

0150 0.02812 0.9855
1500 0.02812 0.9870
2200 0.02455 0.9905

J. Yang et al. Applied Energy 212 (2018) 1589–1600

1594



determined through curve-fitting method.
The fitted correlation curve is plotted as a solid line in Fig. 9. The

detailed fitting function coefficients and two fitting quality criterions,
including RMSE and R2, are listed in Table 3.

It can be observed from Table 3 that the value of RMSE is small and
the value of R2 is close to 1, which indicates a good fitting performance.
Cn and τI of all four batteries are plotted in Fig. 10. The solid line in the
figure represents the correlation curve fitted through the data of battery
#1, and the dotted lines give the error bound of 2.5%. It can be ob-
served that most of the points are within the error bonds except one
outlier, which confirms that the relationship between Cn and τI can be
employed to indicate the battery SoH. In addition, it can be concluded
that the linear relationship identified from the reference battery (bat-
tery #1) can also be used to evaluate the capacity degradation of the
other three batteries. Hence, for the batteries from the same manu-
facturer, only the linear relationship of the reference battery should be
established in advance, which can effectively reduce the testing effort.

4.2. Correlation identified from the partial CV charging data

4.2.1. Reference correlation curve selection
In practical applications, some batteries cannot reach the cut-off

current value due to the uncompleted charging process or the mea-
surement noise of the current sensors. Thus, only part of the CV char-
ging current curve can be obtained in this case. Based on the existing
research work [54,55], the identified time constant of the battery
terminal voltage is not a constant value, but a variable as a function of
open-circuit time. Similarly, the value of τI should also be a variable
with respect to the length of CV charging data. Based on the data of

battery #1, Cn is plotted versus the corresponding τI identified from the
partial (the former 300, 400 and 600 sampling data) and the whole CV
charging data in Fig. 11. In addition, the relevant correlation curves and
the corresponding fitting results are shown in Fig. 11 and Table 4.

It can be observed from Fig. 11 that even in the same aging state, τI
identified from the data with different lengths shows diverse values,
which in turn leads to the various fitted correlation curves. Hence,
applying τI corresponds to one specific data length (ld) to the correlation
curve with respect to other ld can cause a significant SoH estimation
error. For example, τI identified from the former 400 sampling data is
159.1 s, and the corresponding Cn should be 0.8912 (i.e., point B in
Fig. 11). However, the estimated Cn is 0.9404 and 0.9701 when sub-
stituting τI into the correlation curve fitted from the former 600 sam-
pling data and the whole data size, respectively, as illustrated in Fig. 11.
The straightforward way to overcome this problem is to identify the
correlation curve covering a wide range of ld with a particular data
length interval (Δld) in advance, then store them in the on-board mi-
crocontroller as a database. When τI of a specific ld is identified, it can
be put into the “Cn-τI database” to find a correlation curve with respect
to a closest ld. The accuracy of the estimated Cn depends on the selected
Δld. The smaller Δld yields more details and thus the higher Cn esti-
mation accuracy, whereas it requires more storage resources and offline
identification efforts, especially for the battery with long CV charging
period. Besides, it can be concluded from Table 4 that the correlation
curve identified from the data with less ld shows a worse fitting per-
formance, which in turn leads to a larger SoH estimation error. An al-
ternative method is to predict the specific τI (τI,ref) corresponding to a
predetermined longer ld (ld,ref), based on the uncompleted CV charging
data. Then, the battery SoH can be estimated by substituting the pre-
dicted τI,ref into the reference correlation curve, which is identified from
the data with size of ld,ref. Although the correlation curve identified
from the whole data size exhibits the best fitting performance, as illu-
strated in Table 4, it is impractical to employ it as the reference cor-
relation curve, because the complete CV charging time cannot be ob-
tained in advance. On the other hand, it can be concluded from Fig. 4
that the shortest complete CV charging time is slightly more than 600 s.
Hence, the correlation curve identified from the former 600 sampling
data is selected as the reference correlation curve in this paper.

4.2.2. Current time constant prediction
In order to predict τI,ref, the functional relationship between τI and ld
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Fig. 9. Correlation between Cn and τI of battery #1.

Table 3
Curve fitting results of battery #1.

a1 b1 RMSE R2

−0.001063 1.143 0.0113 0.9761
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Fig. 10. Correlation between Cn and τI of all four batteries.
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Fig. 11. Comparison of correlations between Cn and τI with respect to different ld.

Table 4
Curve fitting results with respect to different ld.

Data size a1 b1 RMSE R2 Correlation coefficient

ld=300 −0.002348 1.218 0.01496 0.8912 −0.9440
ld=400 −0.00222 1.239 0.008814 0.9622 −0.9809
ld=600 −0.00196 1.252 0.007512 0.9731 −0.9865
Whole −0.001163 1.155 0.00701 0.9761 −0.9880
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should be determined firstly. Scatter plots of τI versus ld after different
cycles (600, 1050 and 2300 cycles) are shown in Fig. 12 to illustrate the
relationship between these two sets of data.

It can be observed from Fig. 12 that τI increases with the increase of
ld. Considering the tendency of the related data, the fitting function as
shown in (24) is adopted to quantitatively describe the relationship
between τI and ld [32].

= +τ a l bln( )I d2 2 (24)

where a2 and b2 are the fitting function coefficients. The fitting results,
as shown in Fig. 12 (the dotted lines) and Table 5, demonstrate that the
employed fitting function can accurately describe the increasing ten-
dency of τI.

To evaluate the accuracy of the predicted τI,ref estimated from par-
tial CV charging data, the identified fitting curves based on the first 300
and 400 sampling data after different cycles are given in Fig. 13. The
actual τI points covering the former 800 sampling data are also plotted
in Fig. 13. It shows that the identified curves match well with the actual
points. This can also be observed in Table 6, where the relative errors
between the predicted and the actual τI,ref are all less than 10% in six
cases. In addition, compared with the predicted τI,ref based on the
former 300 sampling data, the values obtained based on the former 400
sampling data have a lower overall error. This is because more fitted
data points yield more information to predict the variation tendency of
τI. Considering the accuracy of the predicted τI,ref, at least 300 s of the
CV charging period is required for the tested batteries.

4.3. Developed SoH estimation scheme

With the established reference quantitative relationship between Cn

and τI, an online SoH (mainly on the battery capacity fading) estimation
scheme is developed, as shown in Fig. 14. The measured battery voltage
and current are recorded in the on-board storage component as soon as
the charging process enters the CV charging mode. The recorded data
sets are processed when the charging process is finished. If the recorded
data size is no less than the selected ld,ref (e.g., 600 selected in this
paper), τI,ref can be identified directly from the former sampling data
with size of ld,ref. Otherwise, the values of τI covering the former data
sets with different lengths (e.g., 10, 20,… , ld) identified firstly. Sec-
ondly, the quantitative correlation between τI and ld (expressed as (24))
can be obtained through curve fitting method. Afterwards, τI,ref can be
predicted by substituting ld,ref into the identified fitting function. At last, the battery SoH can be derived using the correlation between Cn and

τI,ref, and the present battery capacity can be updated.

5. Verification and discussion

An online SoH estimation method is proposed in this paper, which is
based on the analysis of load current during CV charging period. The
developed method can be applied to the uncompleted CV charging
process.
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Table 5
Curve fitting results after different cycles.

Cycles a2 b2 RMSE R2

0600 48.33 −163.4 6.1466 0.9722
1050 61.27 −216.7 6.1371 0.9820
2300 71.07 −272.8 5.6040 0.9890
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Fig. 13. Comparison between prediction curves and actual τI points after different cycles.

Table 6
τI,ref prediction results based on the different ld.

Cycles τI,ref_actual τI,ref_predict
(ld=300)

Relative error
(ld=300)

τI,ref_predict
(ld=400)

Relative error
(ld=400)

0600 140.0 s 132.2 s −5.571% 135.3 s −3.357%
1050 167.7 s 159.6 s −4.830% 164.2 s −2.087%
2300 183.3 s 179.5 s −2.073% 183.4 s 0.05456%

Note: τI,ref_actual is the actual τI,ref identified based on the former 600 sampling data, and
τI,ref_predict is the predicted τI,ref derived based on the prediction model.
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Based on the reference correlation curve established upon the data
from battery #1 and the logarithmic function-based τI,ref prediction
model, all four batteries’ SoH can be derived online from the CV
charging data. Specifically, the definition of SoH is expressed as [33]:

= × = ×C
C

CSoH 100% 100%actual

initial
n

(25)

Firstly, to assess the performance of the reference correlation curve
established upon the data of battery #1, the SoH estimation results
obtained from the former 600 sampling data (ld,ref=600) of all four
batteries are listed in Table 7. It can be concluded from Table 7 that by
using the reference correlation curve identified through the data of
battery #1, the aging states of all four batteries can be estimated within
2.5% error bond except a few outliers. Hence, the battery SoH can be
estimated by the reference correlation curve successfully. Furthermore,
for the batteries from the same manufacturer, the correlation curve can
be established by a reference battery in advance. Afterwards, the SoH of
all the other batteries can be estimated when τI,ref is derived from the
CV charging data.

Secondly, to evaluate the performance of the proposed method
when ld is less than ld,ref, the SoH estimations based on the τI,ref pre-
diction model (method 1) and “Cn-τI database” (method 2) are both
conducted to make a comparison. The stored Cn-τI correlations are
identified from the CV charging data ranging from the former 300 s
(ld=300) to former 600 s (ld=600) with a resolution of 50 s
(Δld=50). Specifically, the former 320 s (ld=320) and former 420 s
(ld=420) are employed to test the robustness of two methods in terms
of data size. The comparison of SoH estimation results obtained from
the former 320 and 420 sampling data of all four batteries are sum-
marized in Tables 8 and 9, respectively. The results show that

(1) Compared with method 2, method 1 yields the lower overall SoH
estimation error in both cases. It indicates the superiority of the τI,ref

prediction model in terms of its robustness to the data size. With
respect to method 2, better results will be obtained if the stored
correlation curves are identified with shorter Δld. However, more
storage resources and offline identification efforts are required,
especially for batteries with the long-time CV charging period (e.g.
more than 30min for batteries in [46,56,57]).

(2) For both methods, the SoH estimated upon the longer ld generally
has a better performance, compared with the estimation results
based on the shorter ld. Based on the analysis in Section 4.2.2, the
improved performance in method 1 is supposed to be caused by the
more accurate τI,ref prediction results. For method 2, the improve-
ment is supposed to be brought by the better fitting performance of
the correlation curve, as has been discussed in Section 4.2.1.

(3) The SoH can be estimated by method 1 with less than 2.5% absolute
error except a few outliers. Hence, based on the τI,ref prediction
model, the battery SoH can be monitored by using the uncompleted
CV charging data.

6. Future work

In this paper, the simple first order ECM is adopted to characterize
the battery behavior during the CV charging period. Besides, only
LiFePO4 batteries are tested and the charging condition is nearly con-
stant through the aging test. Therefore, for the future work, some ex-
tensions to the employed model (e.g., the higher order ECM) will be
considered to enhance the model performance. In addition, more ex-
periments and further study are required to investigate the generality of
the proposed method, including its potential to be used for different
battery chemistries, charging protocols and operating temperatures.

7. Conclusion

An online SoH estimation method is proposed in this paper, which is
based on the analysis of load current during CV charging period.
According to the preliminary analysis of the battery test data, the time
constant of CV charging current, which is derived based on the ECM, is
considered as a robust characteristic parameter related to the battery
capacity fading. The quantitative correlation between Cn and τI is es-
tablished to indicate the battery SoH. Specifically, for the uncompleted
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Fig. 14. The proposed online SoH estimation scheme.

Table 7
SoH estimation results with ld=600 of all four batteries.

Battery #1 Battery #2

SoHref SoHest SoHerr SoHref SoHest SoHerr

98.15% 97.76% −0.3981% 98.07% 96.71% −1.359%
95.87% 96.39% 0.5234% 95.99% 96.34% 0.3485%
94.74% 93.92% −0.8211% 94.91% 92.08% −2.828%
93.77% 92.33% −1.439% 93.01% 90.64% −2.369%
92.78% 93.07% 0.2842% 90.31% 89.77% −0.5444%
90.12% 89.68% −0.4426% 89.23% 87.81% −1.421%
89.12% 89.13% 0.01295% 88.57% 89.03% 0.4585%
87.82% 88.07% 0.2462% 87.02% 88.96% 1.940%

Battery #3 Battery #4

SoHref SoHest SoHerr SoHref SoHest SoHerr

98.86% 99.20% 0.3417% 99.46% 99.35% −0.1130%
97.81% 97.95% 0.1451% 96.74% 96.58% −0.1603%
95.27% 96.59% 1.323% 95.80% 95.03% −0.7699%
92.53% 91.56% −0.9770% 94.74% 94.90% 0.1566%
90.51% 89.49% −1.017% 92.94% 90.92% −2.018%
89.91% 88.97% −0.9395% 90.51% 91.07% 0.5538%
89.33% 90.25% 0.9164% 88.19% 89.70% 1.516%
87.94% 86.12% −1.821% 87.72% 86.45% −1.270%

Note: SoHref are obtained based on the capacity measurement, and SoHest and SoHerr are
obtained based on the reference correlation curve.
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CV charging process, the reference correlation curve with respect to the
specific data length is employed to estimate the battery SoH. Besides,
the logarithmic function-based prediction model is identified from the
partial CV charging data to predict τI,ref. Four LiFePO4 batteries are
employed under test to verify the feasibility of the proposed method.
The results demonstrate that the correlation coefficient between Cn and
τI can reach −0.9880. Moreover, the correlation function extracted
from one battery is able to evaluate the SoH of other three batteries
with less than 2.5% absolute error except a few outliers, regardless of

the adopted data size.
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Table 8
SoH estimation results with ld=320 of all four batteries.

Battery #1 Battery #2

SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2 SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2

98.15% 99.24% 1.082% 96.33% −1.824% 98.07% 98.24% 0.1745% 95.41% −2.655%
95.87% 98.28% 2.419% 95.07% −0.7923% 95.99% 96.91% 0.9141% 94.62% −1.376%
94.74% 95.56% 0.8257% 92.36% −2.375% 94.91% 95.94% 1.031% 92.69% −2.214%
93.77% 93.64% −0.1323% 91.49% −2.284% 93.01% 92.73% −0.2856% 89.47% −3.546%
92.78% 95.26% 2.478% 92.81% 0.02934% 90.31% 91.15% 0.8382% 88.96% −1.350%
90.12% 90.04% −0.07813% 87.93% −2.189% 89.23% 89.90% 0.6685% 86.43% −2.802%
89.12% 90.20% 1.085% 87.75% −1.370% 88.57% 90.32% 1.747% 88.35% −0.2163%
87.82% 88.93% 1.110% 86.73% −1.091% 87.02% 89.75% 2.729% 87.29% 0.2675%

Battery #3 Battery #4

SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2 SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2

98.86% 100.5% 1.641% 97.33% −1.529% 99.46% 99.31% −0.1487% 97.13% −2.333%
97.81% 99.57% 1.767% 96.20% −1.603% 96.74% 98.05% 1.308% 95.15% −1.597%
95.27% 97.45% 2.188% 94.67% −0.5999% 95.80% 96.56% 0.7582% 93.74% −2.055%
92.53% 93.51% 0.9769% 91.23% −1.299% 94.74% 95.80% 1.063% 92.58% −2.158%
90.51% 91.52% 1.012% 88.57% −1.938% 92.94% 92.29% −0.6482% 90.08% −2.857%
89.91% 87.78% −2.127% 87.56% −2.346% 90.51% 90.38% −0.1354% 89.15% −1.363%
89.33% 90.34% 1.007% 88.05% −1.285% 88.19% 90.65% 2.462% 91.03% 2.846%
87.94% 85.81% −2.132% 84.20% −3.740% 87.72% 85.62% −2.099% 82.38% −5.340%

Note: SoHest_1 and SoHerr_1 are obtained based on the τI,ref prediction model, and SoHest_2 and SoHerr_2 are obtained based on the Cn-τI correlation curve with respect to ld=300.

Table 9
SoH estimation results with ld=420 of all four batteries.

Battery #1 Battery #2

SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2 SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2

98.15% 98.56% 0.4072% 96.54% −1.616% 98.07% 97.97% −0.09717% 96.06% −2.009%
95.87% 97.05% 1.184% 95.10% −0.7621% 95.99% 96.25% 0.2590% 95.08% −0.9134%
94.74% 95.11% 0.3717% 93.20% −1.535% 94.91% 94.78% −0.1376% 92.92% −1.992%
93.77% 92.98% −0.7898% 91.82% −1.954% 93.01% 91.61% −1.405% 89.58% −3.432%
92.78% 94.27% 1.491% 92.81% 0.02712% 90.31% 90.40% 0.08593% 88.80% −1.513%
90.12% 89.93% −0.1905% 88.60% −1.519% 89.23% 89.45% 0.2200% 86.66% −2.572%
89.12% 89.51% 0.3883% 88.19% −0.9307% 88.57% 88.52% −0.0469% 86.78% −1.790%
87.82% 89.24% 1.422% 87.15% −0.6690% 87.02% 89.43% 2.407% 88.16% 1.145%

Battery #3 Battery #4

SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2 SoHref SoHest_1 SoHerr_1 SoHest_2 SoHerr_2

98.86% 100.0% 1.141% 97.97% −0.8868% 99.46% 99.49% 0.02794% 98.20% −1.264%
97.81% 98.96% 1.158% 97.31% −0.4918% 96.74% 97.14% 0.4014% 95.35% −1.390%
95.27% 97.09% 1.820% 95.28% 0.01479% 95.80% 96.37% 0.5701% 94.21% −1.588%
92.53% 92.37% −0.1679% 90.56% −1.971% 94.74% 95.35% 0.6095% 93.63% −1.110%
90.51% 90.75% 0.2417% 88.57% −1.943% 92.94% 91.80% −1.143% 90.42% −2.522%
89.91% 88.99% −0.9155% 86.14% −3.775% 90.51% 90.34% −0.1729% 89.51% −1.002%
89.33% 89.25% −0.07653% 87.85% −1.477% 88.19% 90.91% 2.724% 90.37% 2.183%
87.94% 86.86% −1.081% 85.25% −2.693% 87.72% 85.27% −2.449% 83.93% −3.796%

Note: SoHest_2 and SoHerr_2 are obtained based on the Cn-τI correlation curve with respect to ld=400.
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Appendix A.

Abbreviations and nomenclature

BMS battery management system
CC constant-current
CCCV constant-current constant-voltage
CV constant-voltage
DT LS discrete-time least squares
DV differential voltage
ECM equivalent circuit model
EKF extended Kalman filter
EoL end-of-life
EV electric vehicle
HPPC Hybrid pulse power characterization
IC incremental capacity
LiFePO4 lithium iron phosphate
OCV and VOC open circuit voltage
RMSE Root Mean-Square Error
SEI solid electrolyte interphase
SoC state-of-charge
SoH state-of-health
SoP state-of-power
UDDS Urban Dynamometer Driving Schedule
a1 and b1 fitting function coefficients of the linear relationship
a2 and b2 fitting function coefficients of the logarithmic relationship
Cactual Battery capacity obtained after each characterization test
Ccap battery capacity
Cinitial Battery capacity obtained after the first characterization test
CI C-rate of the load current
Cp, Rp Polarization capacitance and resistance
Cn normalized capacity
H Hysteresis effect
ld data length
Δld data length interval
ld,ref reference data length
IL load current
rxy correlation coefficient between x and y
R2 R-square
Ro Ohmic resistance
T temperature
T1 rest period between each discharge and charge pulses in the HPPC test
T2 rest period after current pulses in the HPPC test
Ts and fs sampling period and frequency
TCV CV charging time
Vp voltage across the RC network
Vt battery terminal voltage
λ Eigenvalue of the system
τI current time constant
τI,ref reference current time constant
τI,ref_actual actual τI,ref identified based on the former 600 sampling data
τI,ref_predict predicted τI,ref derived based on the prediction model
SoHest_1 and SoHerr_1 SoH estimation results based on the τI,ref prediction model
SoHest_2 and SoHerr_2 SoH estimation results based on “Cn-τI database”
SoHref SoH estimation results based on the capacity measurement
SoHest and SoHerr SoH estimation results based on the reference correlation curve
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