
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017 6663

A Distance-Based Two-Stage Ecological Driving
System Using an Estimation of Distribution

Algorithm and Model Predictive Control
Hansang Lim, Member, IEEE, Chunting Chris Mi, Fellow, IEEE, and Wencong Su, Member, IEEE

Abstract—This paper proposes a distance-based two-stage eco-
logical (eco-) driving scheme by using estimation of distribution al-
gorithms (EDA) and model-based prediction of traffic conditions.
Before departure, the optimal speed profile for an entire route is
generated by an EDA in combination with speedup approaches
for a faster computing time, which can optimize the complex cost
function of ecodriving without simplification within a reasonably
short computing time. This optimization is performed in a distance
domain for localizing changes in the optimal speed profile due to
traffic conditions while driving. After departure, by taking the op-
timal speed profile and actual traffic conditions into consideration,
the speed profile for a short term—to only the next location—is
adapted. In order to reliably react to actual traffic conditions, ad-
ditional points are interpolated into the long-term distance step and
fine control of speeds at the additional points is established, which
is based on a predictive model for estimating the spacing to the
preceding vehicle. The proposed ecodriving system is evaluated in
two types of route conditions, and its results are compared with the
optimization result by the quadratic programming method. This
comparison shows that an EDA can generate a speed profile with
better optimization results in terms of fuel efficiency and driving
time within a shorter computing time.

Index Terms—Distance based, ecodriving, estimation of distri-
bution algorithm (EDA), long-term optimization, model predictive
control (MPC), short-term adaptation.

I. INTRODUCTION

V EHICLES account for a large portion of total nonre-
newable energy use and greenhouse gas emissions [1],

and thus, fuel efficient vehicles are in high demand for energy
savings and environmental concerns. Fuel consumption in a
vehicle depends on various factors, such as the characteristics
of its drivetrain, its operation conditions according to road
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and traffic conditions, and driving patterns. Therefore, drivers
need to technologically be assisted in operating a vehicle in
fuel efficient conditions, which is called ecodriving, and many
studies on ecodriving have been reported.

Simulations have been carried out for diverse types of vehicles
to analyze the optimal acceleration and cruise velocity [2]. Some
studies have been conducted to change driving patterns such
that they would be more ecofriendly by giving information on
fuel consumption while driving. A specific guide to driving has
been provided based on vehicle loading conditions [3]. Five
types of feedback for ecodriving are given by using GPS and
CAN bus data [4]. An onboard system which provides visual
and audible warning for uneconomical driving patterns has also
been developed [5].

Recent studies have focused on the optimization of a driv-
ing speed profile in order to maximize fuel efficiency. Dynamic
programming (DP) is widely used as an optimization algorithm
[6]–[9] since the DP method can solve the global optimiza-
tion problem of a nonlinear function with complex constraints
[10], [11], which corresponds to the cost function in ecodriving.
Its global optimization is based on full knowledge of the en-
tire route, including future traffic conditions, and requires long
computing times. However, traffic conditions are usually chang-
ing, so future traffic conditions for the entire route are hard to
anticipate exactly. This unpredictability leads to reoptimization
of the speed profile in reaction to changes in traffic conditions
while driving, which in turn makes global optimization using
the DP method not suitable for online ecodriving.

Common approaches for online ecodriving carry out op-
timization over a finite horizon, i.e., a part of the route, and
usually employ model predictive controls (MPCs) combined
with diverse optimization algorithms. Speed profiles are
optimized for varying road and traffic conditions [12] or for
roads with up-down slopes [13] by using the continuation
and generalized minimum residual method. The quadratic
programming (QP) method is used to calculate the optimal
speed profile on highways with information obtained from
vehicle-to-vehicle communications [14]. Optimal speed profiles
in hilly road conditions are computed by using the Legendre
Pseudospectral method [15].

This optimization of a speed profile over a finite horizon
shows large dependence of its optimization results on the
horizon length. In order to satisfactorily improve fuel effi-
ciency, optimization over a long horizon is preferable, major
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challenges of which are reliable prediction of traffic conditions
for the long horizon and reducing its long computing time.

For reliable prediction of future traffic conditions, traffic data
obtained from communications are integrated with ecodriving
on highways [14], [16]–[19]. The California Freeway Perfor-
mance Measurement System [16], [17] periodically provides
average traffic speed and density and the speed profile that min-
imizes fuel consumption and satisfies the traffic information is
computed [18]. Traffic information obtained through interve-
hicle communication is used to predict the movement of the
preceding vehicle and to compute the optimal vehicle control
inputs [19]. If extended to energy managements in plug-in or
hybrid electric vehicles, the trip model, i.e., the driving cycle is
generated by using the archived historic traffic data on the Web
which are obtained from traffic flow sensors along the freeways
and the generated driving cycle is used for DP-based charge-
depletion control [20], [21]. Traffic flow velocity is extracted
from the average velocity of all vehicles on a specific road seg-
ment through smartphones and this real-time traffic data are
utilized to calculate the optimal state-of-charge trajectory [22].

However, a long computing time cannot be avoided for a long
horizon optimization, which is critical for real-time implemen-
tation. Therefore, the primary challenge in online ecodriving is
to obtain satisfactory optimization results with a fast enough
computing time to be implemented in real time and react to
changes in traffic conditions.

An approach to overcome this challenge by optimizing the
speed profile in a distance domain with a two-stage hierarchy
has been made: one for long-term optimization before depar-
ture and the other for short-term adaptation while driving [23].
This work benefits from distance-based optimization to localize
changes in the long-term optimal speed profile and maintain
its effectiveness, except in areas under heavy traffic conditions.
Short-term adaptation to follow the optimal speed and react to
traffic conditions is made for the speed at only the next location,
which balances the optimization and the computing time.

However, the previous work simplifies the cost function to
utilize the QP method for optimization, which limits its appli-
cation for diverse driving demands in terms of driving time and
fuel consumption. Besides, the optimization cycle needs to be
repeated in order to be in accord with changes in the vehicle
status, such as gear numbers, which is estimated from initial
conditions, and this repetition increases the computing time.
Then, on a long trip, a step size for the short-term adaptation is
so large that the vehicle may not reflect changes in the vehicle
status and traffic conditions.

This paper extends this distance-based two-stage ecodriv-
ing scheme by utilizing an estimation of distribution algorithm
(EDA) and MPC. A speed profile is optimized with the original,
not simplified, cost function by using an EDA. Computation of
the cost function is performed at each location to reflect changes
in the gear numbers and not repeat the long-term optimization
cycle. Then, the short-term speed is adapted with a smaller step
size for more reliable driving by using a fine control framework
based on interpolation and predictive model.

EDAs [24]–[27] are stochastic optimization methods which
build a probability distribution from the promising populations

of the previous ones and generate new populations by using
the probability distribution model. This probabilistic approach
speeds up the optimization process and avoids premature con-
vergence so that EDAs can solve diverse complex problems such
as the cost function in ecodriving.

The major contributions of this paper are as follows.
1) The use of an EDA is investigated for solving nonlin-

ear, generally constrained, and computationally expensive
pretrip optimization problems without simplification. To
the best of our knowledge, the study of ecodriving using
an EDA has not been investigated.

2) A speedup mechanism of an EDA is developed to make a
faster pretrip optimization, which includes initial popula-
tion generation, and selection of the optimal combination
of the number of population, the iteration number, and the
truncation ratio, and their simulation results are tested.

3) In order to efficiently follow the reference speed profile
and reliably react to real-time traffic conditions, an MPC-
based en-route fine adaptation framework is applied to the
short-term adaptation. Additional locations with a small
distance step are interpolated and traffic conditions in the
short horizon are estimated by model-predictive control.

4) Accuracy and effectiveness of the speed profile optimiza-
tion by using an EDA in the proposed ecodriving system
are compared to those by using QP and the performance of
the proposed ecodriving system are analyzed for diverse
driving conditions.

The remainder of this paper is organized as follows. In
Section II, a distance-based two-stage ecodriving scheme and
its control objective are described. Section III presents the ap-
plication of the EDA for long-term optimization and simulation
results. In Section IV, a framework for fine control of the short-
term adaptation is established, and discussions and conclusions
are given in Section V.

II. DISTANCE-BASED TWO-STAGE ECODRIVING SYSTEM

In this section, the structure of the proposed distance-based
ecodriving system with two stages is presented. Then, the vehic-
ular propulsion model and the control objective for ecodriving
are derived in a distance domain.

A. Distance-Based Ecodriving System With Two Stages

Optimization for a finite horizon of the route is a common
online ecodriving approach, which deals with only a partial area
of the entire route at each time for fast computing. Thus, its
results are largely dependent on the horizon length [18]. A long
horizon may generate more fuel efficient speed profiles rather
than a short one; however, it requires a reliable prediction about
traffic conditions for a long horizon, which is usually impracti-
cal and restricts its application under diverse traffic conditions.
In particular, the computing time for a long horizon becomes
longer, which limits the allowable horizon length for real-time
implementation and, consequently, the improvement of the fuel
efficiency.

Thus, an ecodriving system divided into two stages is pro-
posed [23]. The first stage generates an optimal speed profile
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for a long horizon, usually an entire route, by taking the charac-
teristics of a drivetrain and road conditions, such as road slopes
and speed limits, into consideration. If available, forecasted or
historic traffic information can be used. This optimization is
performed before departure so that a longer computing time is
allowed in comparison with optimization while driving.

After departure, the second stage controls speeds for only
a short horizon to follow the long-term optimal speed profile
with consideration for actual traffic conditions, which takes a
computing time short enough to be implemented in real time and
makes reliable prediction of traffic conditions practical. Thus, it
can produce satisfactory optimization results even though each
step in the second stage calculates a short horizon.

The spacing to the preceding vehicle is used as a parameter
indicating traffic conditions. In areas under smooth traffic, the
speed is controlled to follow the long-term optimal speed at
each location. In areas under heavy traffic, the speed is adapted
to maintain the safety spacing. In order to localize effects of
traffic conditions on the optimal speed profile, this ecodriving
design is made in a distance domain.

In a speed profile defined in a time domain, any deviation
from the optimal speed profile due to traffic conditions changes
the entire reference speed after that time, which requires reop-
timization for the whole remaining route. By comparison, in a
speed profile defined in a distance domain, any deviation af-
fects only areas under heavy traffic conditions and the reference
speeds of other areas are still effective. That is the reason why
this optimization is performed in a distance domain.

The previous two-stage-based work optimizes the speed pro-
file by using the QP method, where the cost function is simplified
into a quadratic form. This simplification limits its application to
diverse driving demands. In the first-stage optimization, com-
putations at all locations were performed all at once and the
vehicle status, such as gear numbers and efficiencies of the con-
stituent systems, are estimated from the initial speed profile.
Accordingly, the optimization cycle needs to be repeated to ac-
cord with the vehicle status of the resulting speed profile, which
increases the computing time. Although the first stage has a
longer time budget for long-term optimization since it is per-
formed before departure, its allowed time is still limited and the
computing time is preferable to be short. In addition, the number
of locations for speed control is limited such that the distance
step for a long trip may be too large for proper vehicle control.
Too large a distance step for control cannot reflect changes in the
vehicle status, such as a gear shift, and the driving environment,
such as traffic conditions.

In this study, an advanced two-stage distance-based ecodriv-
ing scheme is proposed by adding three important contributions.
First, the optimization is performed with the original, not sim-
plified, cost function by using an EDA, which can cover a wide
range of driving demands. Second, the vehicle status at each
location is calculated by using the actual operating conditions,
such as the vehicle speed and engine speed at that location and
the repetition of the optimization cycle is not required, which
shortens the computing time. Third, a distance step in the long-
term speed profile is divided into additional locations with a
smaller step size and a fine control over them in short-term

adaptation is proposed, which is based on MPC. This fine con-
trol framework can secure the safety spacing more reliably in
the real-time traffic conditions.

Fig. 1 shows the overall scheme of the proposed ecodriving
system. As shown in the upper panel, the entire route in the
long-term optimization is composed of (n + 1) locations with
the identical distance of Δs. The total trip distance is n · Δs
and the speeds at n locations are optimized for fuel consump-
tion and driving time, the cost function of which is a nonlinear
function with complex constraints. An EDA is applied to solve
the optimization of this cost function without simplification
within a reasonably short amount of time. Speedup approaches
of an EDA are developed for faster optimization and decrease
in computing time. As a result of this stage, the optimal speed
profile is generated for an entire route, i.e., a sufficiently long
horizon which gives a satisfactory optimized result. This gener-
ated optimal speed profile acts as a reference speed in the local
adaptation.

Then, in the local adaptation, each distance step Δs in the
long-term speed profile is additionally divided into (nf + 1) lo-
cations for more reliable and finer control, including the current
and next locations in the long-term profile. Speeds at the nf

locations in a short horizon of Δs are controlled to follow the
reference speed and keep the safety spacing to the preceding
vehicle through the additional locations. The distance step in
local adaptation is Δs

nf
, which is set to be short enough to control

the vehicle reliably according to actual traffic conditions.
The vehicle performance in the local adaptation is optimized

for a short horizon, but its optimization results can be satisfacto-
rily good, since the vehicle follows the reference speed obtained
from optimization for a long horizon. The reference speeds, ex-
cept those for areas under heavy traffic, are still optimal and
the optimality of the proposed system can be maintained even
though a vehicle undergoes heavy traffic conditions in some
areas.

B. Control Objective for Ecodriving

Based on Willans line approximation [28], the relationships
between the fuel rate and the torque, as well as the fuel rate and
the engine speed, are linearly modeled and, consequently, the
fuel rate ṁf for an engine torque Te and an engine speed ω is
modeled by [23]

ṁf = f(Te, ω) = (β1ω + β2)Te + γ1ω + γ2 (1)

where β1, β2, γ1, and γ2 are constants.
Since the output of this ecodriving system is a speed profile,

the engine speed in (1) is replaced with a vehicle speed v and
(1) is modified to be

ṁf =
(

β1
frgr (n)

rw
v + β2

)
Te + γ1

frgr (n)
rw

v + γ2 (2)

where fr is a final drive ratio, gr (n) is a gear ratio for a given
gear number n, and rw is a wheel radius (m).

It is assumed that a five-speed automatic transmission is in-
stalled and its gear number is set by only the current speed
and the direction of the acceleration and not the amount of the
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Fig. 1. Proposed two-stage distance-based ecodriving scheme.

acceleration, which means that the gear number is not the con-
trol input for optimization. To prevent the gear number from
oscillating at the transition speed, the gear shift is driven with
hysteresis, that is, the upshift and downshift speeds are differ-
ently set. Then, gear ratios corresponding to the first to the fifth
gear numbers are 2.563, 1.552, 1.022, 0.727, and 0.52, in order.

The engine torque Te and brake force Fbrake are the inputs
to control the vehicle speed v(t), and their relationship can be
described by

v̇(t) =
1
m

(
frgr (n)NfrNgr(n)

rw
Te(t) − 1

2
ρCdAdv(t)2

− mgCr cos θ(t) − mg sin θ(t) − Fbrake(t)
)

=
1
m

(
C1Te(t) − C2v(t)2 −C3 − Fbrake(t)) (3)

where C1 = fr gr (n)N f r Ng r (n)
rw

, C2 = 1
2ρCdAd , and C3 =

mgCr cos θ(t) + mg sin θ(t). v̇(t)is the acceleration (m/s2),
Nfr is the efficiency of a final drive, and Ngr(n) is the effi-
ciency of the gear box and the torque converter. Then, m, ρ, Cd ,
Ad , g, Cr, and θ(t) are the mass of the vehicle (kg), the air den-
sity (kg/m3), the drag coefficient, the frontal area of the vehicle
(m2), the gravity (m/s2), the rolling resistance coefficient, and
the road gradient (rad), in that order.

The parameters in (3) are modeled with data obtained from
Autonomie, a simulation software for vehicle performance anal-
ysis developed by the Argonne National Laboratory [29]–[31].
Some parameters can be modeled as constants, which are listed
in Table I.

Ngr(n) is modeled as a product of the efficiencies of the
gear box and torque converter. The efficiency of the gear box
is a function of the gear number and modeled as a constant for
each gear number. The efficiency of the torque converter Etc is
modeled by the combination of a piecewise linear model and a

TABLE I
PARAMETER VALUES

Parameters Values Parameters Values

M 1607 ρ 1.19854
fr 4.438 Cd 0.3
N f r 0.97 Ad 2.25084
rw 0.30115 G 9.81

quadratic model, as in the following:

Etc(T, ω) = min[d1 (ω)Ti + d2(ω)

e1 (ω)Ti + e2(ω)f1 (ω) Ti + f2 (ω)] (4)

where xi(ω) = xi1ω
2 + xi2ω + xi3 for x = d, e, f and i =

1, 2. Ti is the input torque of the torque converter and ω is the
engine speed. The rolling resistance coefficient Cr is modeled
as a linear model of the engine speed.

Let the speed and the time at the location of k · Δs and
those at the location of (k + 1)Δs be v(k), tk , v(k + 1), and
tk+1, respectively. Assume that the acceleration in a distance
step between k · Δs and (k + 1)Δs is kept constant. The time
difference Δtk between tk+1 and tk is given by

Δtk = tk+1 − tk =
2Δs

v(k) + v(k + 1)
. (5)

Then, the speed at the next location is described by

v(k + 1) = v(k) + v̇(k)
2Δs

v(k) + v(k + 1)
. (6)

By multiplying by v(k) + v(k + 1) on both sides and inserting
(3), the relationship between the next speed and control inputs,
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such as Te and Fbrake , is derived by

v(k + 1)2 =
(

1 − 2C2Δs

m

)
v(k)2

+
[

2C1Δs

m
, −2Δs

m

] [
Te(k)

Fbrake(k)

]
− 2C3Δs

m

= Āv(k)2 + B̄1Te(k) + B̄2Fbrake(k) + C̄ (7)

where Ā = 1 − 2C2Δs
m , B̄1 = 2C1Δs

m , B̄2 = − 2Δs
m , and C̄ =

− 2C3Δs
m .

In the first stage, a long-term optimization is performed by
balancing fuel consumption and the speed deviation from the
target speed, and its cost function is defined by

Jopt = w1

n−1∑
k=0

ṁf (k)Δtk

+ w2

n−1∑
k=0

(
v(k + 1)2 − Vtarget(k + 1)2

)2
(8)

where Vtarget is the target speed at the next location, which
may be a speed limit or an average speed reflecting the cur-
rent traffic conditions. In this study, a speed limit is used as
the target speed. In (8), the first and second terms represent
the fuel consumption and the speed deviation, respectively,
while w1 and w2 are constants representing their weights. The
speed deviation is related to driving time.

In the second stage, a local adaptation is performed by also
taking the spacing to the preceding vehicle into account, and its
cost function at the kth location of the long-term speed profile
is defined by

Jadapt = w1

nf −1∑
l=0

ṁf (l)Δt(l) + w2

nf∑
l=1

(
v(l)2 − Vtarget

∗(l)2
)2

+
nf∑
l=1

ew 3(S s a f e (l)−Sp r e
∗(l)) (9)

where l is the fine location added between k and (k + 1) loca-
tions of the long-term optimal speed profile. Ssafe and S∗

pre are
the safety spacing and actual spacing to the preceding vehicle,
respectively. The superscript of ∗ represents that the parameter
is estimated. The third term represents the spacing related term
reflecting the traffic condition. By using an exponential function
for the spacing difference [19], a spacing shorter than the safety
spacing is exponentially weighted.

III. LONG-TERM OPTIMIZATION USING AN EDA

In this section, long-term optimization by using EDA is
described.

A. Application of an EDA

By inserting (2), (5), and (7) into (8), the cost function can be
given by

Jopt = w1

n−1∑
k=0

((
β1

frgr (ng )
rw

v(k) + β2

)
Te(k)

+ γ1
frgr (ng )

rw
v(k) +γ2)

× 2Δs

v(k) +
√

Āv(k)2 + B̄1Te(k) + B̄2Fbrake(k) + C̄

+ w2

n−1∑
k=0

(
Āv(k)2 + B̄1Te(k) + B̄2Fbrake(k)

+ C̄ − Vtarget(k + 1)2
)2

(10)

subject to

0 ≤ Te(k) ≤ Tmax

0 ≤ Fbrake(k) ≤ FBrake(max)

v(k) ≤ speed limit(k)

v(0) = v(n) = 0.

As shown in (10), this cost function is a nonlinear complex
function of the control inputs of Te and Fbrake . The previous
work simplifies the cost function into a quadratic form to apply
the QP method [23], but this simplification is valid for only
limited driving demands.

In this study, an EDA is used for optimizing the cost function
without simplification. Based on stochastic approaches, an EDA
can optimize a nonlinear problem with complex constraints. The
probability-based generation of promising samples speeds up
the optimization in an EDA and gives an explicit structure to the
problem.

EDAs initially generate a predefined number of samples of
control inputs for all n locations from 0 to (n-1)Δs. Thus, each
sample consists of n pairs of control inputs (Te , Fbrake), which
is called population. The number of populations is npop and
values of the cost function for all samples are computed and
compared.

Then, samples with smaller values of the cost function are
chosen and the number of chosen samples is given by the mul-
tiplication of the number of populations and the truncation ratio
npop × tr . The probability distributions, such as the average and
the standard deviation, of the chosen samples are calculated.
Based on the normal distribution with the calculated average
and standard deviation, new npop × (1 − tr )samples are ran-
domly generated. This process is repeated a predefined iteration
number of times.

For a trip, the speed at the initial location v(0) should be zero.
After starting from a speed of zero, the gear number at each
location is determined by the current speed and the speed at the
next location is estimated by (7) in each population, which are
used for computing the cost function.

During an initial iteration, EDAs usually generate the pop-
ulations at random, since characteristics of a target system are
unknown. Based on the randomly generated initial population
set, more optimal ranges of the solution are estimated by the
average and standard deviation of the population set. Although
the long-term optimization is performed before departure, the
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Fig. 2. Average speed estimation of the initial populations.

allowed time is still finite and it is preferable to obtain the opti-
mization result within a shorter time.

Therefore, three approaches were adopted to shorten the com-
puting time in applications of an EDA. First, the populations of
the initial iteration are generated by the estimated possible solu-
tion area, instead of random generation. If characteristics of the
target system and, consequently, the area where the possible and
good solutions are located are known, the computing time for
the optimal solution can be reduced. Due to the physical limit
and general characteristics of the drivertrain, the possible area
can be estimated and the initial populations are selected from
the area.

In this study, the average values of the control inputs during
the initial iteration were simply assumed by the linear acceler-
ation and deceleration in speed transition regions, as shown in
Fig. 2. The dotted and solid lines represent the speed limit and
the average speed for the initial population generation.

Then, the standard deviations were assumed to be about two
fifth of their maximum values, based on several simulation re-
sults. By using these estimated average and standard deviations,
populations were generated and the computing time could be
reduced. Smaller standard deviations increase both the possibil-
ities that the cost function is fast optimized and the solution goes
out of the optimal area. The maximum values of Te and Fbrake
are 220 and 3120 N · m, respectively, and as a result of several
trials, their standard deviations were set to be 80 and 1000.

Fig. 3 shows fuel consumptions optimized by an EDA for
diverse values of constituent parameters, such as the number
of populations, the number of iterations niter , and a truncation
ratio. In each panel, the multiplication of the number of popula-
tions and the iteration number npopniter is fixed, i.e., the number
of samples is fixed. The circle and diamond represent the opti-
mized results by using initial populations randomly generated
and generated from the possible area which is estimated by lin-
ear acceleration and deceleration, respectively. The truncation
ratio is set to be 0.5, which is a usual value.

Fuel consumption decreases as the amount of npopniter in-
creases. For a fixed amount of npopniter , fuel consumption de-
creases to some number of populations and begins to increase
for larger numbers. Fuel consumption by using the estimated
possible area is smaller in comparison with those of random
generation. It means that the smaller number of iteration is
required to obtain the same fuel consumption by using the es-
timated possible area and, consequently, the computing time
can be shortened. The driving time and the computing time are
almost same for the same npop and niter conditions.

Second, a small truncation ratio is used with sufficiently large
populations. A small truncation ratio means more exchange of
new samples and, accordingly, may lead to a fast conversion, but
it also increases the possibility of converging to a local solution.
On the other hand, as many populations are generated, samples
near the global solution may be included in the populations. A
small truncation ratio needs to be set by taking the relationship
between the truncation ratio and the number of populations into
consideration.

The relationship between them was shown in Fig. 3. The dia-
mond and triangle represent the optimization results by using the
truncation ratio of 0.5 and 0.3, respectively. Both are based on
initial populations generated from the estimated possible area.
For a smaller number of populations than 300, the application of
the truncation ratio of 0.5 shows smaller fuel consumption but
the truncation ratio of 0.3 shows better performance as the num-
ber of populations increases. For a fixed amount of npopniter , a
large number of population leads to a small number of iterations,
and, consequently, a short computing time. Thus, the truncation
ratio was set to be 0.3 for the number of populations equal to or
larger than 300.

Third, the number of populations and the iteration number
were tradedoff. In EDAs, the number of calculations is the prod-
uct of the number of populations and the number of iterations.
The gear number and the efficiencies of the gear box and the
torque converter, which are used to compute the cost function,
are dependent on the current speeds and the torque inputs. For
estimating those values accurately, they are calculated at each
location from 0 to nΔs in the entire route. Then, this calculation
is iterated. Thus, the computing time is linearly proportional to
the iteration number.

The comparison of (npop , niter) = (100, 600) and (200,
600), (200, 300), and (400, 300), and so on in the left panel
of Fig. 4 shows that, as the number of populations increases, the
computing time for each iteration increases, but it is not linearly
proportional, since all populations are simultaneously calculated
at each location by matrix calculation. Whereas large popula-
tions tend to shorten the iteration number required for conver-
gence, to some extent, which decreases the computing time since
the computing time is linearly proportional to the iteration num-
ber, which is shown by the comparison of npopniter = 60 000
with npopniter = 120 000. However, this tendency is saturated
and too large populations only increase the computing time.

The relationship among the number of populations, the iter-
ation number, and the computing time were shown in Fig. 4.
As the amount of npopniter increases, the fuel consumption de-
creases but the computing time increases. Considering the fuel
consumption and the computing time, the number of populations
and the iteration number are set to be 400 and 250, respectively.

B. Simulations

Long-term optimization by using an EDA is implemented and
solved using MATLAB. The weights w1 and w2 in (8) balance
the effects of the fuel consumption term and speed deviation
term. A relatively large value of w1 gives more weight to fuel
consumption and generates a speed profile with a low speed
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Fig. 3. Optimization results for diverse EDA parameters.

Fig. 4. Fuel consumption versus computing time.

and a long driving time, which is not suitable for actual driving
notwithstanding its good fuel economy since it obstructs traffic.
On the other hand, a large value of w2 leads to a speed pro-
file with hard acceleration and deceleration to a target speed on
each route and a short driving time, which is also not advisable
due to its bad fuel economy. Therefore, a speed profile shows a
tradeoff between fuel consumption and speed deviation, depend-
ing on the weight values and a good balance between them is
required.

Based on simulation results for diverse values of w1 and
w2, their values are set to be 108 and 2, respectively. These
values guarantees that the average speed deviations from the
target speed in the steady-state regions are less than 10% and,
consequently, show the best balance between fuel consumption
and driving time. The final speed of the entire route should be

Fig. 5. Generated optimal speed profile I.

zero. This is implemented by adding the term of w4(v(n + 1) −
0) into the cost function and setting its weight w4 to be 1010.

To test the validity of the proposed EDA-based ecodriving
system, two driving routes were simulated. Both routes were
5 km long but had different shapes. Road gradients are assumed
to be zero in the entire route. A distance step is 25 m and the
total number of locations is 201.

Fig. 5 shows the optimal speed profile generated for test
route I, which is a hat-shaped route. The upper and lower panels
show the generated speed profile in the distance and time do-
main, respectively. The solid line represents the optimal speed
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Fig. 6. Control inputs for the generated optimal speed profile.

Fig. 7. Generated optimal speed profile II.

profile and the dotted line represents the speed limits, which
are used as target speeds. The estimated fuel consumption was
0.250 kg and the driving time was 289 s. The computing time
for this optimization was 39.9 s with an Intel i5-2467M core at
a frequency of 1.6 GHz.

The engine torque and brake for this speed profile are shown
in Fig. 6. The engine torque increases at the speed-up regions
and goes to almost zero at the speed-down regions. At regions
with a constant speed, the average engine torque is kept to be
constant. It is shown that a brake force is applied only around
the end region and a glide is used in the deceleration regions,
which is a big advantage of optimization for a long horizon.

The optimal speed profile for test route II, which is a more
complicated route, is shown in Fig. 7. The estimated fuel con-
sumption was 0.262 kg and the driving time was 258 s. The
computing time for this optimization was 40.2 s. Due to a higher
speed than that of the first route, the fuel consumption increases,
and the driving time decreases.

EDAs utilize random generation of populations by using a
probability distribution, and the results optimized by EDAs need
to be statistically analyzed. Fifty simulations were performed for
each route, and Fig. 8 shows histograms of the fuel consumption,
driving time, and computing time.

Fig. 8. Statistical analysis of optimized results by EDAs. (a) Fuel consumption
(kg). (b) Fuel consumption (kg). (c) Driving time (s). (d) Driving time (s). (e)
Computing time (s). (f) Computing time (s).

Fig. 8(a), (c), and (e) corresponds to the results for test route I.
The average values of fuel consumption and driving time were
0.249 kg and 289 s, respectively. Their standard deviations were
0.001 and 1.32, which are less than 1% of the average values.
The average computing time was 40.2 s.

Fig. 8(b), (d), and (f) corresponds to the results for test route II.
The average values of fuel consumption and driving time were
0.265 kg and 258 s, respectively. Their standard deviations were
0.001 and 1.70, which were less than 1% of the average values,
too. The average computing time was 41.4 s. The optimization
results for both routes were statistically reliable.

C. Comparison With QP

To validate the optimized results produced by EDAs, they are
compared with the results generated by QP. The cost function
in (8) is simplified into a quadratic form. Fifty QP simulations
were performed for each route, and their results are shown in
Fig. 9.

For test route I, the average fuel consumption and driving
time in the speed profile optimized by the QP were 0.256 kg and
308 s, respectively, and their standard deviations were 0.0003
and 0.03, respectively. The computing time was 109.2 s. For test
route II, the average fuel consumption and driving time were
0.265 kg and 284 s, respectively, and their standard deviations
were 0.0005 and 0.0148, respectively.

As shown in (3) and (7), the gear numbers are needed for
computing the cost function value. Optimization by the QP
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Fig. 9. Statistical analysis of optimized results by QP. (a) Fuel consumption
(kg). (b) Fuel consumption (kg). (c) Driving time (s). (d) Driving time (s). (e)
Computing time (s). (f) Computing time (s).

method was performed by matrix calculation and the parameter
values, such as gear numbers, at all locations were required
before optimization. Thus, the gear numbers were estimated
from the initial condition, and optimization for the entire route
was simultaneously performed by using the estimated values.
The estimated parameter values were probably different from
the values of the generated speed profile.

To compensate for this discrepancy in the parameter values,
the optimization by QP was repeated until the parameter values
were the same or the effect of the discrepancy was negligibly
small. That is the reason why the computing times for QP in
Fig. 9 are divided into two groups. Each optimization cycle takes
less than 30 s, and the number of repeated cycles was two to
five. The small computing times correspond to a group matched
early to a gear number.

In comparing the EDA results with the QP results, speed
profiles optimized by EDAs have better performance, but wider
distribution. Average fuel consumptions are almost the same in
the range from 0% to 2%, but average driving times computed
by EDAs are shorter than those produced by QP by 6% to 9%.
Consequently, the speed profiles generated by EDAs are better
optimized.

The speed profiles generated by QP have more uniform per-
formance though. Specifically, the driving times in all simula-
tions are identical. Although the driving times generated by
EDAs have a wider distribution, their maximum values are
smaller than the driving time calculated by the QP method,
and their variations are less than 1%. In particular, the fuel

Fig. 10. Local driving times to the next location.

consumptions are almost the same, and the computing times
required by EDAs are shorter than those of QP. Thus, long-term
optimization by EDAs is sufficiently competitive for ecodriving.

IV. LOCAL ADAPTATION BASED ON MPC

While driving, the vehicle tries to follow the optimal speed
profile obtained in the long-term optimization stage and locally
adapts the speed according to traffic conditions for a short hori-
zon. For more reliable and fuel efficient driving control, each
distance step in the optimal speed profile is interpolated into
additional locations with a smaller distance step. Fine speeds at
the additional locations are generated for the short horizon.

A. Application of MPC

Due to limit of the allowed computing time, the distance step
in the optimal speed profile generated for a long route is large.
A large distance step corresponds to a long local driving time
from one location to the next location. The dashed line in Fig.
10 represents the local driving times in a long-term optimized
speed profile. The average driving time is 1.44 s, which is too
long to cope with real-time traffic conditions.

Thus, in the second stage, each distance step in the long-term
optimal speed profile is divided into nf (= 5) steps and the total
number of locations where the speeds are controlled increases
by nf times. The distance step in this stage is Δs/nf and fine
controls at the additional locations are established. The solid line
in Fig. 10 represents the local driving time for the fine distance
step, the average value of which is 0.297 s.

The spacing to a preceding vehicle in heavy traffic conditions
becomes narrower while the spacing in smooth conditions be-
comes wider. Thus, the spacing to the preceding vehicle is used
as an index indicating traffic conditions. For safety reasons, a
following vehicle maintains a minimum spacing to a preceding
vehicle, which is called a safety spacing. The safety spacing is
dependent on the speed of the following vehicle.

If the spacing to a preceding vehicle is farther than the safety
spacing, the vehicle follows the optimal speed profile, but if
the spacing is narrower than the safety spacing, the speeds are
regulated to secure the safety spacing. Thus, the spacing to the
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preceding vehicle is modeled by using the acceleration at the
previous step.

In this study, a horizon for adaptation to traffic conditions is
set to a distance step Δs in the long-term optimal speed profile.
The speed of the preceding vehicle and its spacing at each fine
location are assumed to be measured. Then, the acceleration of
the preceding vehicle at the kth location in the long-term optimal
speed profile for the next Δs horizon a∗

pre(k) is estimated to be a
weighted sum of accelerations apre(l|k) at fine locations in the
previous Δs horizon, as in the following:

a∗
pre(k) =

−1∑
l=nf (=−5)

wa(l)apre(l|k), for k = 0, . . . , n (11)

where l represents a fine location inside the Δs long horizon,
and wa(l) is a weight. The superscript ∗ represents the estimation
value.

To quickly respond to the variation in the speed of the pre-
ceding vehicle, the last two accelerations are more weighted—
that is, wa(l) = 0.3 for l = −1, −2 and wa(−l) = 0.2 for
l = −3, −4, −5. ‘l < 0’, ‘l = 0’, and ‘l > 0’ mean the pre-
vious, current location, and next locations, respectively.

Then, the speed of the preceding vehicle v∗
pre(l|k) for the next

horizon to the (k + 1)th location is estimated by

v∗
pre(l|k) ≈ vpre(0|k) + a∗

pre(k)

l∑
m=1

Δt(m|k) (12)

for l = 1, 2, · · · , nf (= 5), where vpre(0|k) is the speed of the
preceding vehicle at the kth location and v∗

pre(nf |k) becomes
the estimated speed of the preceding vehicle at the (k + 1)th
location. Δt(m|k) is the driving time in which the following
vehicle goes from the (m − 1)th fine position to the mth fine
position between the kth and (k + 1)th locations of the long-term
optimal speed profile, which is described by

Δt(m|k) =
2Δs

nf (v(m − 1|k) + v(m|k))
(13)

where v(·) represents the speed of the following vehicle.
The next location of the preceding vehicle L∗

pre(l|k) can be
estimated by

L∗
pre(l|k) ≈ L∗

pre(l − 1|k)

+
vpre(l − 1|k) + v∗

pre(l|k)
2

Δt(l|k). (14)

Thus, the spacing to the preceding vehicle for the next horizon
S∗

pre(l|k) is estimated by

S∗
pre(l|k) = L∗

pre(l|k) − L(l|k)

= Spre(0|k) +
l∑

m=1

v∗
pre(m − 1|k) + v∗

pre(m|k)
2

× Δt(m|k) − l
Δs

nf
(15)

and compared with the safety spacing, which is defined by [8]

Ssafe(l|k) = kv × v(l|k) + Sstop (16)

Fig. 11. Local adaptation for speed profile I under smooth traffic conditions.

where kv is a proportional constant, and Sstop is the desired
spacing when the vehicle stops. Both values are set to 2.

By inserting (13)–(15) into (9), the cost function for a short
horizon from the kth location to the (k + 1)th location is
described by

Jadapt(k) = w1

nf∑
l=1

ṁf (l)Δt(l|k)

+ w2

nf∑
l=1

(
v(l|k)2 −Vtarget

∗(l|k)2
)2

+
nf∑
l=1

ew 3(S s a f e (l|k)−Sp r e
∗(l|k)) . (17)

The boundary conditions are the same as those for (10) except
the initial and final speeds. The speed limit may be changed in
the distance step. Thus, Vtarget∗(l|k) in (17) is given by

Vtarget
∗(l|k) = min(v(k), vlim (k)), for k = 0, . . . , n (18)

where v(k) is the reference speed at the kth location in the long-
term optimal speed profile, and vlim (k) is the speed limit at that
location. The comparison between the estimated spacing and
the safety spacing is implemented in the form of an exponential
function in order to ensure a large effect on a closer condition
than the safety spacing.

B. Local Adaptation for Traffic Conditions

The number of populations and iterations are set as 200 and
60, respectively. The weighs are set as w1 = 105, w2 = 1,
w3 = 103, and w4 = 108 which is the weight of the additional
term w4(v(nf |k) − v(k + 1)) for the final speed boundary con-
dition. First, under smooth traffic conditions, the local adap-
tation was performed for optimal speed profile I with the fine
distance step Δs/nf .

Fig. 11 shows that the local speeds follow the optimal long-
term speed profile well, except for in the initial area indicated by
a dotted circle. The estimated fuel consumption was 0.260 kg
and the driving time was 297 s, which were 4% and 2% apart,
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Fig. 12. Speed of the preceding vehicle and the spacing.

respectively, compared to those of the long-term optimization
results. This error was thought to be due to the difference in
gear shift. The computing time to the next location in the long-
term optimal speed profile with added nf fine locations has the
average of 0.250 and the standard deviation of 0.03.

In the long-term optimization, the distance step is 25 m and
a change in the speed at this distance step can be over the speed
range covered by a fixed gear number. A hard acceleration area,
shown in the circle of Fig. 11, actually requires the gear shift
to be larger than one step. However, during each distance step,
the gear is assumed to be fixed and a low gear number status
allows larger torque supply for hard acceleration. Thus, the long-
term optimal speed profile has a rapid increase in speed during
hard acceleration, compared to that of the locally adapted speed
profile, which is the reason for the small deviation.

Next, the vehicle following optimal speed profile I undergoes
heavy traffic conditions in the middle of the trip. In the upper
panel of Fig. 12, the solid- and dashed-lines represent the speed
of the preceding vehicle and the speed of the following vehicle
given by the long-term optimal speed profile, respectively. The
preceding vehicle slowed down at around the 2000 m-distant
areas, owing to heavy traffic. In the lower panel, the solid line
represents the estimated spacing to the preceding vehicle, S∗

pre ,
when the following vehicle keeps the long-term optimal speed
without adaptation. The dashed line represents the safety spac-
ing calculated by (16). Around the areas under heavy traffic,
S∗

pre is narrower than the safety spacing such that adaptation is
required.

Fig. 13 shows the locally adapted speed profile. The upper and
lower panels represent the speed profile in a distance domain
and a time domain, respectively. It is shown that the adapted
speed is reduced around the 2000-m-distance area. The esti-
mated fuel consumption was 0.273 kg, and the driving time was
299 s. Compared to under the smooth traffic conditions, fuel
consumption increased by 5%. The computing time to the next
location in the long-term optimal speed profile has the average
of 0.272 and the standard deviation of 0.04.

The spacing to the preceding vehicle adapted by the locally
adapted speed profile is shown in Fig. 14. Unlike the lower panel
in Fig. 12, the spacing is shown to be equal to or wider than the

Fig. 13. Local adaptation of speed profile I under heavy traffic conditions.

Fig. 14. Spacing to the preceding vehicle by the local adaptation.

safety spacing. The vehicle speed was controlled for securing
the safety spacing around heavy traffic areas and reflected well
the traffic conditions.

V. DISCUSSION AND CONCLUSION

This study extends a two-stage ecological driving system op-
timized in a distance domain by using an EDA and MPC, which
consists of a long-term optimization stage and a local adapta-
tion stage. The former stage optimizes the speed profile for an
entire trip route without consideration for traffic conditions be-
fore departure. The latter stage utilizes the optimal speed profile
given by the former stage as a reference speed and adapts the
reference speed for a short horizon according to actual traffic
conditions while driving. In order to localize the change in the
optimal speed profile due to traffic conditions, the optimization
was performed in a distance domain.

The cost function for optimizing fuel consumption and driv-
ing time in a distance domain is nonlinear and complex. There-
fore, an EDA was applied for optimizing the cost function
without simplification, which can cover more diverse driving
demands. To speed up the computing, three approaches to the
application of an EDA were adopted: linearly accelerated ini-
tial conditions, a balance between the number of populations
and the iteration number, and a small truncation ratio. For more
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effective and reliable driving, the distance step in the long-
term speed profile was interpolated and speeds at additional
locations with a fine distance step were controlled in the local
adaptation. The next spacing to the preceding vehicle was esti-
mated by its weighted previous accelerations and MPC was used
for optimizing the fuel consumption, the driving time, and the
spacing.

This two-stage ecodriving system requires several input pa-
rameters, such as a long-term distance step and a short-term
distance step. Their effects and the choice of the optimal values
are the subject of future work.
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